Robotic Telescope Unravels Mystery of Cosmic Blasts

The scientists from Liverpool John Moores University and colleagues in the UK, Italy, France and Slovenia used the Liverpool Telescope on the island of La Palma and its novel new polarimeter, RINGO, to perform the measurement following detection of the burst by NASA's Swift satellite.

Gamma Ray Bursts are the most instantaneously powerful explosions in the Universe and are identified as brief, intense and completely unpredictable flashes of high energy gamma rays on the sky. They are thought to be produced by the death throes of a massive star and signal the birth of a new black hole or neutron star (magnetar) and ejection of an ultra-high speed jet of plasma. Until now, the composition of the ejected material has remained a mystery and, in particular the importance of magnetic fields has been hotly debated by GRB scientists.

The Liverpool measurement was obtained nearly 100 times faster than any previously published optical polarisation measurement for a GRB afterglow and answers some fundamental questions about the presence of magnetic fields.

Principal author of the Science paper and GRB team leader Dr Carole Mundell of the Astrophysics Research Institute, Liverpool John Moores University, said “Our new measurements, made shortly after the Gamma Ray Burst, show that the level of polarisation in the afterglow is very low. Combined with our knowledge of how the light from this explosion faded, this rules-out the presence of strong magnetic fields in the emitting material flowing out from the explosion – a key element of some theories of GRBs.”

The so-called optical afterglow is thought to originate from light emitted when this ejected material impacts the gas surrounding the star. In the first few minutes after the initial burst of gamma rays, the optical light carries important clues to the origin of these catastrophic explosions; capturing this light at the earliest possible opportunity and measuring its properties is ideally suited to the capabilities of large robotic telescopes like the Liverpool Telescope.

Lord Martin Rees, Astronomer Royal and President of the Royal Society said “We are still flummoxed about the underlying 'trigger' for gamma ray bursts, and why they sometimes emit bright flashes of light. Theorists have a lot of tentative ideas, and these observations narrow down the range of options.”

Professor Keith Mason, CEO of the Particle Physics and Astronomy Council (PPARC) and UK lead investigator on Swift’s Ultra Violet/Optical Telescope, said, “This result demonstrates well the effectiveness of Swift’s rapid response alert system, allowing robotic telescopes, such as the Liverpool Telescope, to follow up gamma ray bursts within seconds, furthering our knowledge with each detection.”

Media Contact

Gill Ormrod alfa

More Information:

http://www.pparc.ac.uk

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors