Novel regulation of the common tumor suppressor PTEN

Researchers led by scientists at Memorial Sloan-Kettering Cancer Center have now identified fundamentally novel regulatory mechanisms of PTEN function. The findings from two related studies are published in the January 12 issue of Cell.

The first is research by Dr. Xuejen Jiang's laboratory at Sloan-Kettering which identified a novel component that regulates PTEN. This protein, NEDD4-1, controls protein stability in cells. Researchers found that NEDD4-1 is a key component in eliminating PTEN from cells by adding a molecular tag, ubiquitin, to PTEN causing degradation in the cellular machinery called proteasome. In a mouse model for prostate cancer, the researchers found that areas with aggressive tumor contained low PTEN levels and high NEDD4-1. They concluded that NEDD4-1 could promote cancer development by down-regulating PTEN.

The second study by Dr. Pier Paolo Pandolfi of Memorial Sloan-Kettering and colleagues found that the ubiquitination of PTEN by NEDD4-1 also regulates another important aspect of PTEN, its cellular localization.

PTEN has been found mostly in the cytoplasm but has been known to also be in cell nuclei. While the cytoplasmic function of PTEN is now quite well understood, its nuclear functions have been elusive. Looking at a family with an inherited PTEN mutation that caused them to have the cancer-susceptibility condition, Cowden Syndrome, researchers found that the patients' colon cancer strikingly lacked nuclear PTEN.

The Pandolfi and Jiang labs showed that the PTEN mutation in these patients prevented the addition of ubiquitin by NEDD4-1, providing a molecular mechanism for the detrimental effect of the mutant PTEN protein. They showed that the single ubiquitin tagging is necessary to import PTEN into the cell nucleus where it is protected from degradation and cancer is initiated.

According to the researchers, the uncovered key role of PTEN degradation provides a new therapeutic strategy. Since ubiquitination has both positive (single tag) and negative (repetitive tagging) effects, a class of drugs, the proteasome inhibitors, that selectively blocks the degrading effects of ubiquitination, should now be studied as possible treatments for cancers with PTEN mutations.

Media Contact

Joanne Nicholas EurekAlert!

More Information:

http://www.mskcc.org

All latest news from the category: Health and Medicine

This subject area encompasses research and studies in the field of human medicine.

Among the wide-ranging list of topics covered here are anesthesiology, anatomy, surgery, human genetics, hygiene and environmental medicine, internal medicine, neurology, pharmacology, physiology, urology and dental medicine.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors