Human activities are boosting ocean temperatures in areas where hurricanes form

Using 22 different computer models of the climate system, Benjamin Santer and six other atmospheric scientists from the Lawrence Livermore National Laboratory, together with Tom Wigley, Gerald Meehl, and Warren Washington from the Boulder-based National Center for Atmospheric Research (NCAR) and scientists from eight other research centers, have shown that the warming sea surface temperatures (SSTs) of the tropical Atlantic and Pacific oceans over the last century is linked to human activities.

NCAR's primary sponsor is the National Science Foundation.

“We've used virtually all the world's climate models to study the causes of SST changes in hurricane formation regions,” Santer says.

Research published during the past year has uncovered evidence of a link between rising ocean temperatures and increases in hurricane intensity. This has raised concerns about the causes of the rising temperatures, particularly in parts of the Atlantic and Pacific where hurricanes and other tropical cyclones form.

Previous efforts to understand the causes of changes in SSTs have focused on temperature changes averaged over very large ocean areas, such as the entire Atlantic or Pacific basins. The new research specifically targets SST changes in much smaller hurricane formation regions.

For the period 1906-2005, the researchers found an 84 percent probability that human-induced factors–primarily an increase in greenhouse gas emissions–account for most of the observed rise in SSTs in the Atlantic and Pacific hurricane formation regions.

“The important conclusion is that the observed SST increases in these hurricane breeding grounds cannot be explained by natural processes alone,” says Wigley. “The best explanation for these changes has to include a large human influence.”

Hurricanes are complex phenomena that are influenced by a variety of physical factors, such as SSTs, wind shear, water vapor, and atmospheric stability. The increasing SSTs in the Atlantic and Pacific hurricane formation regions are not the sole determinant of hurricane intensity, but they are likely to be one of the most significant influences.

“It is important to note that we expect global temperatures and SSTs to increase even more rapidly over the next century,” Wigley says.

According to Santer, “In a post-Katrina world, we need to do the best job we possibly can to understand the complex influences on hurricane intensity, and how our actions are changing those influences.”

Media Contact

David Hosansky EurekAlert!

More Information:

http://www.ucar.edu

All latest news from the category: Studies and Analyses

innovations-report maintains a wealth of in-depth studies and analyses from a variety of subject areas including business and finance, medicine and pharmacology, ecology and the environment, energy, communications and media, transportation, work, family and leisure.

Back to home

Comments (0)

Write a comment

Newest articles

Why getting in touch with our ‘gerbil brain’ could help machines listen better

Macquarie University researchers have debunked a 75-year-old theory about how humans determine where sounds are coming from, and it could unlock the secret to creating a next generation of more…

Attosecond core-level spectroscopy reveals real-time molecular dynamics

Chemical reactions are complex mechanisms. Many different dynamical processes are involved, affecting both the electrons and the nucleus of the present atoms. Very often the strongly coupled electron and nuclear…

Free-forming organelles help plants adapt to climate change

Scientists uncover how plants “see” shades of light, temperature. Plants’ ability to sense light and temperature, and their ability to adapt to climate change, hinges on free-forming structures in their…

Partners & Sponsors