Oxygen deprived brains repaired and saved

Dr Nicole Jones and her team discovered that during oxygen deprivation, or 'hypoxia', these proteins (HIF1á and PHD2) increase.

These proteins regulate processes like the production of red blood cells and new blood vessels, and the flow of glucose to the brain. Therefore they are involved in preventing further brain damage and repairing damage caused by the initial injury.

This discovery takes the Howard Florey Institute's scientists closer to developing preventative and regenerative treatments for brain damage caused by hypoxia.

Dr Jones said her discovery resulted from looking at how the body tries to protect itself and how the brain reacts when it experiences mild, non-damaging hypoxia.

“I found that mild, non-damaging hypoxia actually protected the brain against a subsequent injury by activating certain proteins,” Dr Jones said.

“Mild hypoxia appears to pre-condition neural tissues against a mass 'suicide' of healthy neurons after a stroke or other brain trauma.

“In an experiment in rats, mild hypoxia followed by a major stroke resulted in less brain damage than if the rat experienced just a major stroke – all because these protective proteins were increased by the first non-damaging exposure to hypoxia.

“I am now looking at developing both preventative and regenerative treatments that mimic these proteins' protective and repairing effects,” she said.

Dr Jones is now testing drug candidates, and would like to develop new drugs that activate these protective proteins in the brain.

While further research is required, Dr Jones and her team are hopeful that their investigations will lead to effective treatments that will help people experiencing hypoxia, and also to improve recovery from hypoxic induced brain damage.

Media Contact

Merrin Rafferty EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors