Water May Not Have Formed Mars’ Recent Gullies

If you’re a scientist studying the surface of Mars, few discoveries could be more exciting than seeing recent gullies apparently formed by running water.

And that’s what scientists believed they saw in Mars Orbital Camera (MOC) images five years ago. They published a paper in Science on MOC images that show small, geologically young ravines. They concluded that the gullies are evidence that liquid water flowed on Mars’ surface sometime within the last million years.

A word of caution, though: The moon has gullies that look like that, a University of Arizona Lunar and Planetary Laboratory researcher has found. And water certainly didn’t form gullies on the waterless moon.

Gwendolyn D. Bart is presenting the work today at the 37th Lunar and Planetary Science Conference in Houston.

“We’d all like to find liquid water on Mars,” Bart said. “That would be really, really exciting. If there were liquid water on Mars, humans wouldn’t have to ship water from Earth when they go to explore the planet. That would be an enormous cost savings. And liquid water near the surface of Mars would greatly increase the chances for native life on Mars.”

The 2000 Science paper was provocative, Bart said. “But I was skeptical. I wondered if there is another explanation for the gullies.”

Then last year she heard a talk by Allan Treiman of the Lunar and Planetary Institute. Treiman suggested the martian gullies might be dry landslides, perhaps formed by wind and not formed by water at all.

Recently, Bart was studying the lunar landscape in high-resolution images taken in 1969, prior to the Apollo landings, for her research on processes that modify the lunar surface.

“Totally by accident, I saw gullies that looked strikingly like the gullies on Mars,” she said.

“If the dry landslide hypothesis for the formation of martian gullies is correct, we might expect to see similar features on the moon, where there is no water,” she said. “We do.”

Gullies in the moon’s 10-mile-diameter (17 kilometer) crater Dawes are similar in structure and size to those in a martian crater that MOC photographed. Micrometeorites hitting the smooth slopes and crater on the airless moon could easily trigger small avalanches that form gullies, Bart said.

However, the martian gullies also resemble gullies on Earth that were formed by water, she noted.

“My point is that you can’t just look at the Mars gullies and assume they were formed by water. It may be, or may be not. We need another test to know.”

Media Contact

Lori Stiles University of Arizona

More Information:

http://www.arizona.edu

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors