UCSB researchers develop hybrid silicon evanescent laser

In what promises to be an important advance, researchers at the University of California, Santa Barbara have developed a novel laser by bonding optical gain layers directly to a silicon laser cavity. This hybrid laser offers an alternative to silicon Raman lasers and is an order of magnitude shorter. The laser is optically pumped, operates in continuous wave mode, and only needs 30 mW of input pump power.

This evanescent silicon laser demonstration is the first step toward an electrically pumped hybrid silicon laser. Increasingly, the performance of microelectronic systems will depend more on the connections between chips and devices than on the characteristics of the chips and devices themselves. As semiconductor systems get smaller, interconnect capacity and power dissipation will limit their performance. Optical interconnects could alleviate these limitations but the challenge has been to create a semiconductor laser that can be fully integrated with silicon microelectronics.

The laser developed by John Bowers and his students, Alex Fang and Hyundai Park, uses InAlGaAs quantum wells to provide optical amplification. “The ability to combine the best of both worlds (i.e. III-V gain material with silicon photonics) could lead to a new way of enabling highly integrated laser sources with intelligent opto-electronic devices for future optical communications at low cost,” said John Bowers, professor of electrical and computer engineering at UCSB .

Media Contact

Barbara B. Gray EurekAlert!

More Information:

http://www.ucsb.edu/

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors