Less O2 Triggers Grasshopper Molting, Farmers Could Benefit

“These grasshoppers, Schistocerca americana, emerge as 10-milligram juveniles and become 2.5-gram adults in about six weeks,” Kirkton said. “That’s a 250-fold weight increase – the equivalent of an 8-pound baby being 2,000 pounds after six weeks.”

With each molt, grasshoppers shed their exoskeletons and emerge into new ones that provide room for growth. During the six stages of their lifecycle, they get progressively larger.

Using an x-ray video or synchrotron at Argonne National Laboratory’s Advanced Photon Source in Chicago, Kirkton and his collaborator, Kendra Greenlee, assistant professor of biology at North Dakota State University, visualized living grasshoppers at different stages within an instar – the time between molts. They found that grasshoppers’ insides are essentially too big for their outsides near the end of each stage, and organs for breathing (air sacs and tracheae) were compressed.

“We found that late-stage grasshoppers have trouble breathing and oxygen delivery is reduced, such that molting might occur sooner than expected to increase exoskeleton size and alleviate respiratory system compression,” said Kirkton.

And if oxygen availability does trigger molting, farmers could benefit.

“If crops were stored at lower oxygen levels, we might be able to reduce the effect of pests,” said Kirkton. “Less oxygen would decrease body size by forcing pests to complete life-stages faster, giving them less time to reach maximum adult size. Also, low oxygen may reduce metabolism, and therefore, insect appetite.”

The research was funded by the National Science Foundation and the U.S. Department of Energy.

Future work will examine how oxygen delivery varies with development in other crop pests, such as the tobacco hornworm caterpillar, Manduca sexta.

Media Contact

Phil WajdaPhone Newswise

More Information:

http://www.union.edu

All latest news from the category: Agricultural and Forestry Science

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors