Material Screening Method Allows More Precise Control Over Stem Cells

Now, a new screening process will simplify non-viral transfection, providing a method researchers and clinicians use to find an optimal set of biomaterials to deliver genes to cells.

Developed by William Murphy, the Harvey D. Spangler professor of biomedical engineering at the University of Wisconsin-Madison, the method gives researchers greater control over how cells react to the gene delivery mechanism. The broader implication is more nuanced, effective control over cell behavior. “We've been exploring using this concept for reprogramming of adult cells, as well as controlling differentiation of stem cell types,” Murphy says.

Murphy and his collaborators published news of their advance in the March 28, 2013 issue of Nature Scientific Reports. http://www.nature.com/srep/2013/130328/srep01567/full/srep01567.html

In a current successful approach, researchers use specialized viruses to deliver genetic material to cells. While efficient, that method also carries a greater risk of turning on unwanted genes or provoking an immune response from the body —making it less attractive for sensitive biomedical applications like controlling stem cell behavior, says Murphy.

His team has developed a process that does not rely on viruses. Rather, the researchers can grow specific calcium phosphate coatings that serve as a medium via which genetic material can be delivered to cells more efficiently. By matching a coating to a specific application for delivering genes, Murphy has seen up to a 70-fold increase in successful expression of those genes in human stem cells.

“From an application standpoint, the advance could be really impactful, and could enable gene delivery to become an integral part of medical device design and tissue engineering applications,” says Murphy.

The process could be critical to further advances in regenerative medicine. Since researchers can apply it to any size or shape of tissue engineering structure, it could help provide engineers a simpler way to build the complex tissue structures required to deliver next-generation drug screening and patient therapies.

The advance was made possible with funding support from the AO Foundation and the National Institutes of Health.

—Mark Riechers, 608-265-8592, mriechers@engr.wisc.edu

Media Contact

Mark Riechers Newswise

More Information:

http://www.wisc.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors