Researchers Assist IBM in Cognitive Computer Chip Design

UC Merced professors Chris Kello and Stefano Carpin have been and will continue heading up one aspect of the project — designing and implementing virtual environments to test these revolutionary new systems. The building blocks of cognitive computers, these cores are expected to learn through experiences, find correlations, create hypotheses and remember and learn from the outcomes, mimicking the brain’s structural and synaptic plasticity.

The goal of the project is to create a system that not only analyzes complex information from multiple sensory inputs at once, but also automatically rewires itself as it interacts with its environment — all while approaching the remarkable power and size efficiency of the human brain. To get there will require research that incorporates principles from nanoscience, neuroscience, computer science and cognitive science.

“This project represents interdisciplinary research at its finest,” said Kello, a cognitive scientist in UC Merced’s School of Social Sciences, Humanities and Arts. “For decades, scientists and engineers have worked on theories of cognition and intelligent algorithms without taking seriously the basic fact that human intelligence is supported by brains that weigh about 3 pounds and consume about 20 watts of power. By contrast, today’s supercomputers weigh tons and consume megawatts of power.”

UC Merced recently received a grant for Phase 2 of the project — known as Systems of Neuromorphic Adaptive Plastic Scalable Electronics, or SyNAPSE — as part of $21 million in new funding from the Defense Advanced Research Projects Agency (DARPA) to the IBM team. Phases 0 and 1 have been successfully completed, and the first two prototype chips have already been fabricated and are undergoing testing.

Dharmendra Modha, project leader for IBM Research, said future applications of the technology could include traffic lights that can integrate sights, sounds and smells and flag unsafe intersections before disaster happens, or cognitive co-processors that would allow servers, laptops, tablets and phones to better interact with their environments.

The UC Merced work involves creating virtual environments in which to test this technology without the costs or complications of testing them in the real world.

“We are developing a high-fidelity simulation environment to test this new technology,” said Carpin, a computer scientist in the School of Engineering. “This effort builds upon our numerous years of experience in this area, and we are proud that UC Merced is playing an important role in this project.”

UC Merced opened Sept. 5, 2005, as the 10th campus in the University of California system and the first American research university of the 21st century. The campus significantly expands access to the UC system for students throughout the state, with a special mission to increase college-going rates among students in the San Joaquin Valley. It also serves as a major base of advanced research and as a stimulus to economic growth and diversification throughout the region. Situated near Yosemite National Park, the university is expected to grow rapidly, topping out at about 25,000 students within 30 years.

Media Contact

James Leonard Newswise Science News

More Information:

http://www.ucmerced.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors