Experimental treatments for cocaine addiction may prevent relapse

More recently, disulfiram was shown to be effective in treating cocaine addiction as well, even though alcohol and cocaine affect the nervous system in different ways.

Now, researchers at Emory University School of Medicine have identified how disulfiram may exert its effects, and have shown that a newer drug with fewer side effects works by the same mechanism.

The results are published online this week by the journal Neuropsychopharmacology. Research assistant professor Jason Schroeder, PhD, and graduate student Debra Cooper are co-first authors of the paper, and the research also involved collaborations with P. Michael Iuvone, PhD, director of research at the Emory Eye Center, Gaylen Edwards, DVM, PhD, head of the department of physiology and pharmacology at the University of Georgia's College of Veterinary Medicine, and Philip Holmes, PhD, professor of psychology at the University of Georgia.

“Disulfiram has several effects on the body: it interferes with alcohol metabolism, but it inhibits several other enzymes by sequestering copper, and can also damage the liver,” says senior author David Weinshenker, PhD, associate professor of human genetics at Emory University School of Medicine. “We wanted to figure out how disulfiram was working so we could come up with safer and potentially more effective treatments.”

In treating cocaine addiction, there are several challenges: not only getting people to stop taking the drug, but also preventing relapse. Cocaine boosts the levels of several neurotransmitters, including dopamine and norepinephrine, at the junctions between nerve cells by blocking the machinery the brain uses to remove them.

Under normal conditions, dopamine is important for the sensation of pleasure produced by natural rewards such as food or sex, Weinshenker says. Cocaine “hijacks” the dopamine system, which plays a large role in addiction. Similarly, norepinephrine has a role in attention and arousal, but its overactivation can trigger stress responses and relapse, he says.

Weinshenker's team showed that disulfiram prevents rats from seeking cocaine after a break, a model for addicts tempted to relapse. At the same time, it doesn't stop them from taking cocaine when first exposed to it, or from enjoying their food.

Disulfiram appears to work by inhibiting dopamine beta-hydroxylase, an enzyme required for the production of norepinephrine. A dose of disulfiram that lowers the levels of norepinephrine in the brain by about 40 percent is effective, while doses that do not reduce norepinephrine have no effect on relapse-like behavior in rats.

To confirm that the beneficial effects of disulfiram were because of dopamine beta-hydroxylase inhibition, the researchers turned to a drug called nepicastat, which was originally developed for the treatment of congestive heart failure in the 1990s.

“Nepicastat is a selective dopamine beta-hydroxylase inhibitor that does not sequester copper or impair a host of other enzymes like disulfiram,” Weinshenker says. “We reasoned that if disulfiram is really working through dopamine beta-hydroxylase, then nepicastat might be a better alternative.”

Researchers at the University of Texas Medical Branch at Galveston have recently completed a Phase I safety trial studying nepicastat for the treatment of cocaine addiction in human subjects.

Weinshenker is co-inventor on a patent on the use of dopamine beta-hydroxylase inhibitors for the treatment of cocaine dependence, and could benefit from their commercialization. This has been reviewed by Emory University's Conflict of Interest Committee, and a management plan is in place.

The research was supported by the National Institute of Drug Abuse and the National Eye Center.

Reference:

J.P. Schroeder et al. Disulfiram Attenuates Drug-Primed Reinstatement of Cocaine Seeking via Inhibition of Dopamine â-Hydroxylase.

Neuropsychopharmacology, 35, page numbers TK (2010).

The Robert W. Woodruff Health Sciences Center of Emory University is an academic health science and service center focused on missions of teaching, research, health care and public service. Its components include the Emory University School of Medicine, Nell Hodgson Woodruff School of Nursing, and Rollins School of Public Health; Yerkes National Primate Research Center; Winship Cancer Institute of Emory University; and Emory Healthcare, the largest, most comprehensive health system in Georgia. Emory Healthcare includes: The Emory Clinic, Emory-Children's Center, Emory University Hospital, Emory University Hospital Midtown, Wesley Woods Center, and Emory University Orthopaedics & Spine Hospital. The Woodruff Health Sciences Center has a $2.5 billion budget, 17,600 employees, 2,500 full-time and 1,500 affiliated faculty, 4,700 students and trainees, and a $5.7 billion economic impact on metro Atlanta.

Learn more about Emory's health sciences: http://emoryhealthblog.com – @emoryhealthsci (Twitter) – http://emoryhealthsciences.org

Media Contact

Holly Korschun EurekAlert!

More Information:

http://www.emory.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors