Rhythmic genomics — the yeast metronome and the walk of life

Ribosomal RNA sequence changes have been ticking away like clockwork for over 3 billion years, maybe even pre-dating the origin of the DNA world itself. However, even the slightest changes in sequence of these genes can be fatal. It is vital to conserve the important genetic 'cogs' to make sure cells function correctly. However, significant changes do occur, contrary to expectation, and yet the yeast somehow still survives.

Furthermore, when two yeasts hybridise the clocks appear to re-set, apparently overwriting each others' rhythm and eliminating unwanted variations on the theme. This provides clues as to how key motifs are conserved and allows us to track the evolutionary history of hybrids.

Steve James, lead researcher at the Institute of Food Research (IFR), said “I have sequenced these genes to selectively identify yeast species for over 15 years and had no idea they would turn out to be so variable.”

Rob Davey, computational biologist at the National Collection of Yeast Cultures (NCYC), said “we can use new computer techniques to model the changes mathematically and really get to grips with what orchestrates the variation in these important cell housekeepers.”

Ian Roberts, Curator of NCYC, said “Yeasts are everywhere around us in nature and industry. This extra level of detail allows us to resolve important differences between yeasts and gain maximum benefits from their use in food, drink and healthcare.”

This work was carried out in collaboration with the Wellcome Trust Sanger Institute and the Massachusetts Institute of Technology. The IFR is an institute of the Biotechnology and Biological Sciences Research Council (BBSRC).

Contacts:

IFR Press Office
Zoe Dunford, Tel: 01603 255111, email: zoe.dunford@bbsrc.ac.uk
Andrew Chapple, Tel: 01603 251490, email: andrew.chapple@bbsrc.ac.uk

Media Contact

Andrew Chapple EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Lower dose of mpox vaccine is safe

… and generates six-week antibody response equivalent to standard regimen. Study highlights need for defined markers of mpox immunity to inform public health use. A dose-sparing intradermal mpox vaccination regimen…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

Partners & Sponsors