Rail, road or waterway?

Prime Argentine steak accompanied by a good French wine, with strawberries from Spain as dessert. And mood music playing on a stereo system made in Japan. Most national and international freight is transported by road, because it is the least expensive option.

But this is likely to change soon, due to road tolls and the rising cost of fuel. Even when it’s a question of making sure that the merchandise is delivered precisely on time, trucks are not always the most reliable solution. It can often take a long time to clear goods through the container terminals, and tailbacks on the motorways can cause additional delays.

So what is the optimum strategy for transporting goods over a particular route? Where could costs be saved by using inland waterways, and at what point would it be best to transship to a road or rail vehicle? What is the cheapest, fastest, or most environmentally compatible overall solution? Answers can be provided by a new software package developed by researchers at the Fraunhofer Institute for Material Flow and Logistics IML in Dortmund. “The user enters the locations between which the goods are to be transported, as you would when using a route planner,” says IML team leader Joachim Kochsiek. “The system calculates different variants to find the optimum solution that fits the specified criterion: costs, time or, in a future version, least environmental burden. It even factors in the time and costs for transshipment.”

Digital maps of road, rail and inland waterway networks can be purchased off the shelf, but the information they provide is not sufficiently detailed for the new software. “There are different categories of train, and different pricing systems for different rail connections – we can’t apply a standard price per kilometer. We need to know what rules apply to the speed, width and height of trains, how many wagons are permitted on a particular section of railroad, and the maximum speed limit. Whereas this kind of information is included in road maps, it has to be compiled manually for the rail networks,” Kochsiek explains.

For each mode of transportation, the system adapts its calculation of costs and fuel consumption to the degree of capacity utilization. For example, the lower the number of wagons pulled by a locomotive, the higher the costs. A prototype version of the software for optimizing time and costs is already available. The researchers are now working on the algorithms for calculating the environmental burden. A later version with online access will enable modified shipping timetables, for instance, to be instantly included in the calculations.

Media Contact

Joachim Kochsiek Fraunhofer-Gesellschaft

All latest news from the category: Transportation and Logistics

This field deals with all spatial and time-related activities involved in bridging the gap between goods and people, including their restructuring. This begins with the supplier and follows each stage of the operational value chain to product delivery and concludes with product disposal and recycling.

innovations-report provides informative reports and articles on such topics as traffic telematics, toll collection, traffic management systems, route planning, high-speed rail (Transrapid), traffic infrastructures, air safety, transport technologies, transport logistics, production logistics and mobility.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors