Trainor Lab characterizes gene essential for prenatal development of nervous system

The findings will be published in the Feb. 15 issue of Development.

In this work, the team used gain- and loss-of-function mutations in mice to isolate novel roles for the mouse Cux2 gene in regulating neurogenesis. They established that Cux2 directs neuroblast development, neuronal differentiation, and cell-fate determination in the spinal cord by coupling progression through the cycle of cell division with differentiation of neural cells by direct activation of two key neurogenic determinants, Neurod and p27Kipl.

“We were excited to uncover, for the first time, multiple functional roles for a Cux-like homeodomain transcription factor in regulating key aspects of spinal cord neurogenesis,” said Angelo Iulianella, Ph.D., Senior Research Associate and first author on the publication. “The demonstration that Cux2 integrates cell-cycle progression with neural progenitor differentiation and cell-fate determination provides a much clearer picture of the complex process of neurogenesis.”

“The impact of cell cycle length on the formation of interneurons versus motoneurons was a surprising finding,” said Paul Trainor, Ph.D., Associate Investigator, and senior author on the publication. “Ongoing work involves global proteomic analyses aimed at identifying the complete set of Cux2-interacting partners. We believe these efforts will be essential to understanding how Cux2 elicits its multiple functions during neurogenesis.”

Further analysis of Cux2 will make it possible to extend these findings not only to spinal cord development, but also to the mammalian cortex, where Cux genes demarcate specific upper layers of cortical neurons and may have played a role in the expansion and increased complexity of the cortex during evolution.

Media Contact

Marie Jennings EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors