Nitrous oxide from ocean microbes

Dr Trimmer looked at nitrous oxide production in the Arabian Sea, which accounts for up to 18 % of global ocean emissions. He found that the gas is primarily produced by bacteria trying to make nitrogen gas.

“A third of the ‘denitrification’ that happens in the world’s oceans occurs in the Arabian Sea (an area equivalent to France and Germany combined)” said Dr Trimmer from Queen Mary, University of London. “Oxygen levels decrease as you go deeper into the sea. At around 130 metres there is what we call an oxygen minimum zone where oxygen is low or non-existent. Bacteria that produce nitrous oxide do well at this depth.”

Gas produced at this depth could escape to the atmosphere. Nitrous oxide is a powerful greenhouse gas some 300 times more so than carbon dioxide, it also attacks the ozone layer and causes acid rain.

“Recent reports suggest increased export of organic material from the surface layers of the ocean under increased atmospheric carbon dioxide levels. This could cause an expansion of the oxygen minimum zones of the world triggering ever greater emissions of nitrous oxide.”

Media Contact

Janet Hurst alfa

More Information:

http://www.sgm.ac.uk

All latest news from the category: Ecology, The Environment and Conservation

This complex theme deals primarily with interactions between organisms and the environmental factors that impact them, but to a greater extent between individual inanimate environmental factors.

innovations-report offers informative reports and articles on topics such as climate protection, landscape conservation, ecological systems, wildlife and nature parks and ecosystem efficiency and balance.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors