Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High disease load reduces mortality of children

18.04.2014

Trans-generational defense mechanism in humans proved

Children who have been conceived during a severe epidemic are more resistant against other pathogens later in life. For the first time this has been proved by researchers at the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, for the 18th century epidemics of measles and smallpox in the Canadian province of Québec.


Protection through pathogens: children conceived by parents that carry pathogens during the time of conception are more resistant against other illnesses later in life. © Photocase

Children who were conceived during the wave of measles in 1714 and 1715 died significantly less often from smallpox 15 years later than children who had been conceived before the measles epidemic.

This is the result of a study published in the scientific journal PLOS ONE by Max Planck researcher Kai Willführ and Mikko Myrskylä from the London School of Economics and Political Science. “We have proved that parents can essentially prepare their children for future diseases,” says bio-demographer Willführ.

“The underlying mechanism is not purely genetic, nor is the children’s resistance restricted to single pathogens.” Scientists call such a transfer a “functional trans-generational effect.” Parents who faced an increased disease load during conception not only gave their children protection against this one infection, but the defense against pathogens apparently also worked better in the next generation against different illnesses like smallpox.

Smallpox mortality fell significantly

The moment of conception was critical for life or death for many children during the 1730 smallpox epidemic. The probability of dying from smallpox had dropped to less than 15 percent for children conceived during the measles epidemic in 1714 and 1715 compared to their brothers or sisters who had been conceived and born before the measles epidemic.

But there was a high price to pay. Those children who were so resistant to smallpox survived the later epidemic with greater probability. But during the time between the two waves of epidemics, their mortality was three times that of their siblings who had been conceived before the earlier measles epidemic and thus were less resistant to smallpox.

“The way children’s bodies fight diseases seems to be optimized for a world with high pathogen load if it was also high at conception,” says MPIDR researcher Kai Willführ. But the children’s resistance does not fit into a world with fewer pathogens and works less well under normal circumstances.

Parents passed on more to their children than just immunity

“It was only during conception and pregnancy that measles could have given an advantage that parents passed on to the next generation,” says Kai Willführ. When the children conceived at the peak of the measles epidemic were born, the measles epidemic had already passed; the pathogens were no longer in the environment.

It can be ruled out that children simply became immune. In principle it is possible for a mother to pass her antibodies, and thus immunity, to her baby. This happens through the placenta during pregnancy and through breast milk after birth. But this protection is limited to the same illness the mother had immunity against. In Québec this would have been measles. However, in this study the researchers found that the children were also resistant against another disease, namely smallpox.

For the first time, the scientists could separate the mortality effects of the different diseases, because they traced the life course of each child individually and of their siblings. For their study they investigated birth cohorts from 1705 to 1724 and their mortality until the year 1740. They achieved data about births and deaths from transcriptions of old church registers of the historical population of the St. Lawrence River valley in the Canadian province of Québec.

Contact 

Silvia Leek
Press Department
Max Planck Institute for Demographic Research, Rostock
Phone: +49 381 2081-143
Email:leek@demogr.mpg.de
 

Dr. Kai Willführ | Max Planck Institute
Further information:
http://www.mpg.de/8133560/Infection_Birth

Further reports about: Children Economics MPIDR Original diseases epidemic pathogens publication siblings

More articles from Social Sciences:

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

nachricht Internet use in class tied to lower test scores
16.12.2016 | Michigan State University

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>