Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High disease load reduces mortality of children

18.04.2014

Trans-generational defense mechanism in humans proved

Children who have been conceived during a severe epidemic are more resistant against other pathogens later in life. For the first time this has been proved by researchers at the Max Planck Institute for Demographic Research (MPIDR) in Rostock, Germany, for the 18th century epidemics of measles and smallpox in the Canadian province of Québec.


Protection through pathogens: children conceived by parents that carry pathogens during the time of conception are more resistant against other illnesses later in life. © Photocase

Children who were conceived during the wave of measles in 1714 and 1715 died significantly less often from smallpox 15 years later than children who had been conceived before the measles epidemic.

This is the result of a study published in the scientific journal PLOS ONE by Max Planck researcher Kai Willführ and Mikko Myrskylä from the London School of Economics and Political Science. “We have proved that parents can essentially prepare their children for future diseases,” says bio-demographer Willführ.

“The underlying mechanism is not purely genetic, nor is the children’s resistance restricted to single pathogens.” Scientists call such a transfer a “functional trans-generational effect.” Parents who faced an increased disease load during conception not only gave their children protection against this one infection, but the defense against pathogens apparently also worked better in the next generation against different illnesses like smallpox.

Smallpox mortality fell significantly

The moment of conception was critical for life or death for many children during the 1730 smallpox epidemic. The probability of dying from smallpox had dropped to less than 15 percent for children conceived during the measles epidemic in 1714 and 1715 compared to their brothers or sisters who had been conceived and born before the measles epidemic.

But there was a high price to pay. Those children who were so resistant to smallpox survived the later epidemic with greater probability. But during the time between the two waves of epidemics, their mortality was three times that of their siblings who had been conceived before the earlier measles epidemic and thus were less resistant to smallpox.

“The way children’s bodies fight diseases seems to be optimized for a world with high pathogen load if it was also high at conception,” says MPIDR researcher Kai Willführ. But the children’s resistance does not fit into a world with fewer pathogens and works less well under normal circumstances.

Parents passed on more to their children than just immunity

“It was only during conception and pregnancy that measles could have given an advantage that parents passed on to the next generation,” says Kai Willführ. When the children conceived at the peak of the measles epidemic were born, the measles epidemic had already passed; the pathogens were no longer in the environment.

It can be ruled out that children simply became immune. In principle it is possible for a mother to pass her antibodies, and thus immunity, to her baby. This happens through the placenta during pregnancy and through breast milk after birth. But this protection is limited to the same illness the mother had immunity against. In Québec this would have been measles. However, in this study the researchers found that the children were also resistant against another disease, namely smallpox.

For the first time, the scientists could separate the mortality effects of the different diseases, because they traced the life course of each child individually and of their siblings. For their study they investigated birth cohorts from 1705 to 1724 and their mortality until the year 1740. They achieved data about births and deaths from transcriptions of old church registers of the historical population of the St. Lawrence River valley in the Canadian province of Québec.

Contact 

Silvia Leek
Press Department
Max Planck Institute for Demographic Research, Rostock
Phone: +49 381 2081-143
Email:leek@demogr.mpg.de
 

Dr. Kai Willführ | Max Planck Institute
Further information:
http://www.mpg.de/8133560/Infection_Birth

Further reports about: Children Economics MPIDR Original diseases epidemic pathogens publication siblings

More articles from Social Sciences:

nachricht Amazingly flexible: Learning to read in your thirties profoundly transforms the brain
26.05.2017 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Fixating on faces
26.01.2017 | California Institute of Technology

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>