Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Babies raised in bilingual homes learn new words differently than infants learning one language

Infants who are raised in bilingual homes learned two similar-sounding words in a laboratory task at a later age than babies who are raised in homes where only one language is spoken.

This difference, which is thought to be advantageous for bilingual infants, appears to be due to the fact that bilingual babies need to devote their attention to the general associations between words and objects (often a word in each language) for a longer period, rather than focusing on detailed sound information. This finding suggests an important difference in the mechanics of how monolingual and bilingual babies learn language.

These findings are from new research conducted at the University of British Columbia and Ottawa. They appear in the September/October 2007 issue of the journal Child Development.

Immigration, official language policies, and changing cultural norms mean that many infants are being raised bilingually. Because nearly all experimental work in infant language development has focused on children who are monolingual, relatively little is known about the learning processes involved in acquiring two languages from birth.

The researchers sought to determine whether the demands of acquiring more sounds and words lead to differences in language development. An important part of language development is the ability to pay attention to native speech sounds to guide word learning. For example, English learners expect that the nonsense words “bih” and “dih” refer to different concepts because “b” and “d” are different consonant categories in English. By 17 months of age, monolingual English infants use native-language speech-sound differences to guide them as they learn words. Do bilingual infants show a similar developmental pattern?

The study revealed that bilingual infants follow a slightly different pattern. Researchers tested bilingual children ages 14, 17, and 20 months on their ability to associate two words that differed in a single consonant sound with two different objects. Experiment 1 included a heterogeneous sample of bilingual babies (i.e., those exposed to English and another language). Experiment 2 tested two homogeneous groups of bilingual infants (English-French and English-Chinese). In both experiments, infants were repeatedly presented with a crown-shaped object that was called “bih” and a molecule-shaped object called “dih.” They were then tested on their ability to notice a switch in an object’s name (for example, the molecule-shaped object being called “bih” instead of “dih”). In all of the groups, the bilingual infants failed to notice the minimal change in the object’s name until 20 months of age, whereas monolingual infants noticed the change at 17 months.

This later use of relevant language sounds (such as consonants) to direct word learning is due to the increased demands of learning two languages, the researchers suggest. Ignoring the consonant detail in a new word may be an adaptive tool used by bilingual infants in learning new words. Outside the laboratory, there is little cost to overlooking some of the consonant detail in new words, as there are few similar-sounding words in infants’ early vocabularies. By paying less attention to the detailed sound information in the word, bilingual infants can devote more cognitive resources to making the links between words and objects.

Extending this approach to word learning for a few months longer than monolinguals may help bilinguals “keep up” with their peers. Indeed, previous research has shown that bilinguals and monolinguals achieve language-learning milestones (such as speaking their first word) at similar ages and have vocabularies of similar sizes when words from both languages are taken into account.

“Through studies with bilingual infants, we can gain a deeper understanding of language development in all infants,” according to Christopher T. Fennell, assistant professor of psychology at the University of Ottawa and the lead author of the study. “In addition, the findings emerging from such studies will have practical implications for parents who are raising their children in a bilingual environment by revealing how young bilinguals acquire language."

Andrea Browning | EurekAlert!
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>