Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Babies raised in bilingual homes learn new words differently than infants learning one language

01.10.2007
Infants who are raised in bilingual homes learned two similar-sounding words in a laboratory task at a later age than babies who are raised in homes where only one language is spoken.

This difference, which is thought to be advantageous for bilingual infants, appears to be due to the fact that bilingual babies need to devote their attention to the general associations between words and objects (often a word in each language) for a longer period, rather than focusing on detailed sound information. This finding suggests an important difference in the mechanics of how monolingual and bilingual babies learn language.

These findings are from new research conducted at the University of British Columbia and Ottawa. They appear in the September/October 2007 issue of the journal Child Development.

Immigration, official language policies, and changing cultural norms mean that many infants are being raised bilingually. Because nearly all experimental work in infant language development has focused on children who are monolingual, relatively little is known about the learning processes involved in acquiring two languages from birth.

The researchers sought to determine whether the demands of acquiring more sounds and words lead to differences in language development. An important part of language development is the ability to pay attention to native speech sounds to guide word learning. For example, English learners expect that the nonsense words “bih” and “dih” refer to different concepts because “b” and “d” are different consonant categories in English. By 17 months of age, monolingual English infants use native-language speech-sound differences to guide them as they learn words. Do bilingual infants show a similar developmental pattern?

The study revealed that bilingual infants follow a slightly different pattern. Researchers tested bilingual children ages 14, 17, and 20 months on their ability to associate two words that differed in a single consonant sound with two different objects. Experiment 1 included a heterogeneous sample of bilingual babies (i.e., those exposed to English and another language). Experiment 2 tested two homogeneous groups of bilingual infants (English-French and English-Chinese). In both experiments, infants were repeatedly presented with a crown-shaped object that was called “bih” and a molecule-shaped object called “dih.” They were then tested on their ability to notice a switch in an object’s name (for example, the molecule-shaped object being called “bih” instead of “dih”). In all of the groups, the bilingual infants failed to notice the minimal change in the object’s name until 20 months of age, whereas monolingual infants noticed the change at 17 months.

This later use of relevant language sounds (such as consonants) to direct word learning is due to the increased demands of learning two languages, the researchers suggest. Ignoring the consonant detail in a new word may be an adaptive tool used by bilingual infants in learning new words. Outside the laboratory, there is little cost to overlooking some of the consonant detail in new words, as there are few similar-sounding words in infants’ early vocabularies. By paying less attention to the detailed sound information in the word, bilingual infants can devote more cognitive resources to making the links between words and objects.

Extending this approach to word learning for a few months longer than monolinguals may help bilinguals “keep up” with their peers. Indeed, previous research has shown that bilinguals and monolinguals achieve language-learning milestones (such as speaking their first word) at similar ages and have vocabularies of similar sizes when words from both languages are taken into account.

“Through studies with bilingual infants, we can gain a deeper understanding of language development in all infants,” according to Christopher T. Fennell, assistant professor of psychology at the University of Ottawa and the lead author of the study. “In addition, the findings emerging from such studies will have practical implications for parents who are raising their children in a bilingual environment by revealing how young bilinguals acquire language."

Andrea Browning | EurekAlert!
Further information:
http://www.srcd.org

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>