Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into brain and speech promises help for learning disabilities

05.04.2005


Learning disabilities such as dyslexia are believed to affect nearly one in 10 children. To better study them, a Northwestern University research team has developed a data-driven conceptual framework that links two well-established scientific concepts. In doing so, they also have developed a non-invasive diagnostic tool called BioMAP that can quickly identify children with learning disabilities.



Scientists have long recognized that children who can best process various aspects of the sounds of language are more likely to read earlier and develop into better readers and writers than those who cannot. After a decade of research, Northwestern Professor Nina Kraus and her colleagues have discovered a subset of learning disabilities that results from a dysfunction in the way the brainstem encodes certain basic sounds of speech.

In an article in the April "Trends in Neurosciences," Kraus, who is Hugh Knowles Professor of Communication Sciences and Neurobiology, and senior research analyst Trent Nicol for the first time ever have linked the source-filter model of acoustics with the cerebral cortex’s "what" and "where" pathways via the auditory brainstem.


The research they present in "Trends" represents the theoretical underpinning for BioMAP, the simple neurophysiological test that can identify children with sound processing disorders. Kraus’s laboratory, in partnership with Bio Systems Corp., will soon make the diagnostic tool available in the marketplace.

BioMAP objectively measures whether a child’s nervous system can accurately translate a sound wave into a brain wave. If it cannot, the affected individual -- like nearly a third of the language-disordered children Kraus has studied -- demonstrates problems in discriminating speech sounds that interfere with normal learning. Once identified, children with these problems will be able to improve their speech discrimination skills through auditory training.

Early in her work -- because the deficits she was exploring related to the complex processes of reading and writing -- Kraus studied how the cortex, the part of the brain responsible for thinking, encoded sound. She and her colleagues now understand that problems associated with the encoding of sound can also occur earlier and lower in the auditory pathway in the brainstem. After analyzing years of data, they have discovered that, when recorded, the brain waves generated at the brainstem level in non-learning disabled children can look almost identical to the sound wave itself. In contrast, the brain waves of language-impaired children look somewhat different from the sound wave, showing evidence of what Kraus calls a "jitter" in the encoding process. In a perfectly functioning system, a given sound will unfailingly induce a neuron to fire a precise number of milliseconds later. In a disordered system, however, the timing of these firings can vary markedly.

"We record the averaged activity of large numbers of neurons," Kraus explains. "If the neurons are not firing when they should, the response gets blurred." She has found a "jitter" in the brainstem’s filter-class response (its response to the linguistic content of a sound wave) while its source-class response (its response to the non-linguistic aspects of speech, such as intonation, emotion, pitch and inflection) appears normal.

"What’s compelling is that we can actually see the neural response from the brainstem to a given acoustic signal," says Kraus. And they can see it both in terms of the nonlinguistic aspects and linguistic characteristics of sound waves. In contrast, when she was recording cortical waves, Kraus had to infer that the electrical activity measured was linked to the characteristics of sound. Now she can see what the sound wave looks like compared to the brain wave, separating the filter and source response.

With funding from the National Institutes of Health, Kraus pays her young subjects five dollars an hour -- ample compensation for the 8- to 12-year-old youngsters -- for participating in achievement assessment, listening skill activities and, most important, the brain related research.

For the latter, non-invasive electrodes are placed on the subjects’ scalps and an earpiece delivers carefully crafted acoustic sounds in one ear. While her subjects contentedly watch a video, Kraus measures the brains’ response to these sounds. Brain activity is recorded by monitoring electricity given off by the nerves in the brainstem at a "pre-attentive" level.

"What makes this translate perfectly into a diagnostic tool is the fact that we don’t have to ask our subjects to follow any directions or engage them in specific tasks," says Kraus. "We simply measure an automatic function of the nervous system while a child watches TV."

Kraus expects BioMAP to become part of the arsenal of tools used by specialists in learning disabilities. What’s more, by linking two basic principles of neuroscience and sensory systems – the acoustic source-filter model with the ’what’ and ’where’ cortical pathways – she and her team are providing researchers with a new way to think about how the brain processes speech in general and how, in particular, the diagnosis and remediation of learning disorders can be improved.

Wendy Leopold | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>