Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New insight into brain and speech promises help for learning disabilities

05.04.2005


Learning disabilities such as dyslexia are believed to affect nearly one in 10 children. To better study them, a Northwestern University research team has developed a data-driven conceptual framework that links two well-established scientific concepts. In doing so, they also have developed a non-invasive diagnostic tool called BioMAP that can quickly identify children with learning disabilities.



Scientists have long recognized that children who can best process various aspects of the sounds of language are more likely to read earlier and develop into better readers and writers than those who cannot. After a decade of research, Northwestern Professor Nina Kraus and her colleagues have discovered a subset of learning disabilities that results from a dysfunction in the way the brainstem encodes certain basic sounds of speech.

In an article in the April "Trends in Neurosciences," Kraus, who is Hugh Knowles Professor of Communication Sciences and Neurobiology, and senior research analyst Trent Nicol for the first time ever have linked the source-filter model of acoustics with the cerebral cortex’s "what" and "where" pathways via the auditory brainstem.


The research they present in "Trends" represents the theoretical underpinning for BioMAP, the simple neurophysiological test that can identify children with sound processing disorders. Kraus’s laboratory, in partnership with Bio Systems Corp., will soon make the diagnostic tool available in the marketplace.

BioMAP objectively measures whether a child’s nervous system can accurately translate a sound wave into a brain wave. If it cannot, the affected individual -- like nearly a third of the language-disordered children Kraus has studied -- demonstrates problems in discriminating speech sounds that interfere with normal learning. Once identified, children with these problems will be able to improve their speech discrimination skills through auditory training.

Early in her work -- because the deficits she was exploring related to the complex processes of reading and writing -- Kraus studied how the cortex, the part of the brain responsible for thinking, encoded sound. She and her colleagues now understand that problems associated with the encoding of sound can also occur earlier and lower in the auditory pathway in the brainstem. After analyzing years of data, they have discovered that, when recorded, the brain waves generated at the brainstem level in non-learning disabled children can look almost identical to the sound wave itself. In contrast, the brain waves of language-impaired children look somewhat different from the sound wave, showing evidence of what Kraus calls a "jitter" in the encoding process. In a perfectly functioning system, a given sound will unfailingly induce a neuron to fire a precise number of milliseconds later. In a disordered system, however, the timing of these firings can vary markedly.

"We record the averaged activity of large numbers of neurons," Kraus explains. "If the neurons are not firing when they should, the response gets blurred." She has found a "jitter" in the brainstem’s filter-class response (its response to the linguistic content of a sound wave) while its source-class response (its response to the non-linguistic aspects of speech, such as intonation, emotion, pitch and inflection) appears normal.

"What’s compelling is that we can actually see the neural response from the brainstem to a given acoustic signal," says Kraus. And they can see it both in terms of the nonlinguistic aspects and linguistic characteristics of sound waves. In contrast, when she was recording cortical waves, Kraus had to infer that the electrical activity measured was linked to the characteristics of sound. Now she can see what the sound wave looks like compared to the brain wave, separating the filter and source response.

With funding from the National Institutes of Health, Kraus pays her young subjects five dollars an hour -- ample compensation for the 8- to 12-year-old youngsters -- for participating in achievement assessment, listening skill activities and, most important, the brain related research.

For the latter, non-invasive electrodes are placed on the subjects’ scalps and an earpiece delivers carefully crafted acoustic sounds in one ear. While her subjects contentedly watch a video, Kraus measures the brains’ response to these sounds. Brain activity is recorded by monitoring electricity given off by the nerves in the brainstem at a "pre-attentive" level.

"What makes this translate perfectly into a diagnostic tool is the fact that we don’t have to ask our subjects to follow any directions or engage them in specific tasks," says Kraus. "We simply measure an automatic function of the nervous system while a child watches TV."

Kraus expects BioMAP to become part of the arsenal of tools used by specialists in learning disabilities. What’s more, by linking two basic principles of neuroscience and sensory systems – the acoustic source-filter model with the ’what’ and ’where’ cortical pathways – she and her team are providing researchers with a new way to think about how the brain processes speech in general and how, in particular, the diagnosis and remediation of learning disorders can be improved.

Wendy Leopold | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>