Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents Naming Objects Shapes Infants’ Development

22.07.2011
A study conducted by University of Massachusetts Amherst psychologist Lisa Scott suggests that long before they are able to speak, infants hear words that shape their development in important ways. In an experiment, Scott found that the words parents use to name objects influence the developing brain and infants’ understanding of the world far earlier than researchers previously believed.

Scott’s results address a debate among research psychologists about the relation between the development of both language and concepts. While adults readily form abstract concepts of objects, animals, places and people, it has been unclear whether pre-verbal infants can do the same. Some researchers argue that infants under a year of age are extremely limited in their ability to use labels parents provide for objects to help them form concepts.

However, Scott’s experiment suggests that six- to nine-month-old infants are in fact using the labels they hear to form concepts of objects. She believes these early concepts form the basis for later learning. Her findings will appear in an upcoming issue of the Journal of Cognitive Neuroscience.

“Our results suggest parents’ differential labeling of objects leads infants to form very different concepts and to have very different brain responses than when parents label all of the objects with the same name,” she says. “For example, learning that dogs are individuals named ‘Oliver’ or ‘Suzie’ leads to a different understanding of dogs than if all dogs are labeled ‘dog.’” Scott also points out that “sometimes learning individuals is more advantageous than learning categories of things. Learning to recognize individual faces is a prime example of this.”

In this study, Scott followed 38 infants from six to nine months of age. Parents brought their babies to the laboratory once at each of these ages; in between they read a picture book to their infants according to a training schedule. At the two visits to the lab, she measured babies’ ability to tell the difference between images of objects as well as their brain responses to the images.

To measure brain responses, Scott measured signals from 128 recording electrodes in a net-like hat on each baby’s head while he or she looked at photographs of upright or upside-down strollers. This assessed whether the infants exhibited holistic processing, or the tendency to ignore separate parts of an object and instead focus on the whole. Holistic processing is found in adults when they learn individual-level labels for objects. Prior to the training, brain responses of all infants in this experiment were similar.

For the training, Scott randomly assigned the infants to one of two learning groups. Parents of babies in each group were asked to read a picture book to their infants that included photos of six different strollers with labels. One group received a book in which the strollers were each labeled differently with nonsense names such as “Wuggum” or “Zoneep.” Parents in the other group read the same book to their babies except the six strollers were give one generic label, “stroller.”

Scott found that though none of the babies could tell the strollers apart when they were six months old, after training those who learned the different stroller names were able to distinguish between new pictures of strollers at nine months. By contrast, infants who heard the generic label for all strollers were not able to tell the new strollers apart.

Babies in the individual-label group significantly increased their ability to tell the strollers apart from 51 percent before training to 64.7 percent after, while infants who learned the generic labels showed no change, at 48 percent in both the pre- and post-test.

“These results are noteworthy because the strollers used in the discrimination task were not the same strollers as in the training book. Therefore infants took what they learned from the book and applied it to new pictures of strollers, suggesting the formation of a concept,” Scott says.

The findings from this study support her hypothesis that if infants learn different labels for the strollers their brains show a pattern of activity suggestive of holistic processing. This pattern is not present for infants who learned the generic level label. “By naming the strollers individually, parents taught their infants that each stroller is unique and inferred that it is important to know the difference between them.”

This is new evidence suggesting that conceptual learning begins early during the first year of life, even before infants can utter their first words. Scott suggests “parents should actively label objects, animals, people and places during the first year of life to promote conceptual development.”

In the future, the UMass Amherst research psychologist hopes to study what happens when babies are provided with individual-level labels for unfamiliar faces, for example people of a different race, to learn whether individual-level labeling will influence their recognition processing for faces of people they do not often encounter.

Lisa Scott | Newswise Science News
Further information:
http://www.umass.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>