Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents Naming Objects Shapes Infants’ Development

22.07.2011
A study conducted by University of Massachusetts Amherst psychologist Lisa Scott suggests that long before they are able to speak, infants hear words that shape their development in important ways. In an experiment, Scott found that the words parents use to name objects influence the developing brain and infants’ understanding of the world far earlier than researchers previously believed.

Scott’s results address a debate among research psychologists about the relation between the development of both language and concepts. While adults readily form abstract concepts of objects, animals, places and people, it has been unclear whether pre-verbal infants can do the same. Some researchers argue that infants under a year of age are extremely limited in their ability to use labels parents provide for objects to help them form concepts.

However, Scott’s experiment suggests that six- to nine-month-old infants are in fact using the labels they hear to form concepts of objects. She believes these early concepts form the basis for later learning. Her findings will appear in an upcoming issue of the Journal of Cognitive Neuroscience.

“Our results suggest parents’ differential labeling of objects leads infants to form very different concepts and to have very different brain responses than when parents label all of the objects with the same name,” she says. “For example, learning that dogs are individuals named ‘Oliver’ or ‘Suzie’ leads to a different understanding of dogs than if all dogs are labeled ‘dog.’” Scott also points out that “sometimes learning individuals is more advantageous than learning categories of things. Learning to recognize individual faces is a prime example of this.”

In this study, Scott followed 38 infants from six to nine months of age. Parents brought their babies to the laboratory once at each of these ages; in between they read a picture book to their infants according to a training schedule. At the two visits to the lab, she measured babies’ ability to tell the difference between images of objects as well as their brain responses to the images.

To measure brain responses, Scott measured signals from 128 recording electrodes in a net-like hat on each baby’s head while he or she looked at photographs of upright or upside-down strollers. This assessed whether the infants exhibited holistic processing, or the tendency to ignore separate parts of an object and instead focus on the whole. Holistic processing is found in adults when they learn individual-level labels for objects. Prior to the training, brain responses of all infants in this experiment were similar.

For the training, Scott randomly assigned the infants to one of two learning groups. Parents of babies in each group were asked to read a picture book to their infants that included photos of six different strollers with labels. One group received a book in which the strollers were each labeled differently with nonsense names such as “Wuggum” or “Zoneep.” Parents in the other group read the same book to their babies except the six strollers were give one generic label, “stroller.”

Scott found that though none of the babies could tell the strollers apart when they were six months old, after training those who learned the different stroller names were able to distinguish between new pictures of strollers at nine months. By contrast, infants who heard the generic label for all strollers were not able to tell the new strollers apart.

Babies in the individual-label group significantly increased their ability to tell the strollers apart from 51 percent before training to 64.7 percent after, while infants who learned the generic labels showed no change, at 48 percent in both the pre- and post-test.

“These results are noteworthy because the strollers used in the discrimination task were not the same strollers as in the training book. Therefore infants took what they learned from the book and applied it to new pictures of strollers, suggesting the formation of a concept,” Scott says.

The findings from this study support her hypothesis that if infants learn different labels for the strollers their brains show a pattern of activity suggestive of holistic processing. This pattern is not present for infants who learned the generic level label. “By naming the strollers individually, parents taught their infants that each stroller is unique and inferred that it is important to know the difference between them.”

This is new evidence suggesting that conceptual learning begins early during the first year of life, even before infants can utter their first words. Scott suggests “parents should actively label objects, animals, people and places during the first year of life to promote conceptual development.”

In the future, the UMass Amherst research psychologist hopes to study what happens when babies are provided with individual-level labels for unfamiliar faces, for example people of a different race, to learn whether individual-level labeling will influence their recognition processing for faces of people they do not often encounter.

Lisa Scott | Newswise Science News
Further information:
http://www.umass.edu

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>