Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Parents Naming Objects Shapes Infants’ Development

22.07.2011
A study conducted by University of Massachusetts Amherst psychologist Lisa Scott suggests that long before they are able to speak, infants hear words that shape their development in important ways. In an experiment, Scott found that the words parents use to name objects influence the developing brain and infants’ understanding of the world far earlier than researchers previously believed.

Scott’s results address a debate among research psychologists about the relation between the development of both language and concepts. While adults readily form abstract concepts of objects, animals, places and people, it has been unclear whether pre-verbal infants can do the same. Some researchers argue that infants under a year of age are extremely limited in their ability to use labels parents provide for objects to help them form concepts.

However, Scott’s experiment suggests that six- to nine-month-old infants are in fact using the labels they hear to form concepts of objects. She believes these early concepts form the basis for later learning. Her findings will appear in an upcoming issue of the Journal of Cognitive Neuroscience.

“Our results suggest parents’ differential labeling of objects leads infants to form very different concepts and to have very different brain responses than when parents label all of the objects with the same name,” she says. “For example, learning that dogs are individuals named ‘Oliver’ or ‘Suzie’ leads to a different understanding of dogs than if all dogs are labeled ‘dog.’” Scott also points out that “sometimes learning individuals is more advantageous than learning categories of things. Learning to recognize individual faces is a prime example of this.”

In this study, Scott followed 38 infants from six to nine months of age. Parents brought their babies to the laboratory once at each of these ages; in between they read a picture book to their infants according to a training schedule. At the two visits to the lab, she measured babies’ ability to tell the difference between images of objects as well as their brain responses to the images.

To measure brain responses, Scott measured signals from 128 recording electrodes in a net-like hat on each baby’s head while he or she looked at photographs of upright or upside-down strollers. This assessed whether the infants exhibited holistic processing, or the tendency to ignore separate parts of an object and instead focus on the whole. Holistic processing is found in adults when they learn individual-level labels for objects. Prior to the training, brain responses of all infants in this experiment were similar.

For the training, Scott randomly assigned the infants to one of two learning groups. Parents of babies in each group were asked to read a picture book to their infants that included photos of six different strollers with labels. One group received a book in which the strollers were each labeled differently with nonsense names such as “Wuggum” or “Zoneep.” Parents in the other group read the same book to their babies except the six strollers were give one generic label, “stroller.”

Scott found that though none of the babies could tell the strollers apart when they were six months old, after training those who learned the different stroller names were able to distinguish between new pictures of strollers at nine months. By contrast, infants who heard the generic label for all strollers were not able to tell the new strollers apart.

Babies in the individual-label group significantly increased their ability to tell the strollers apart from 51 percent before training to 64.7 percent after, while infants who learned the generic labels showed no change, at 48 percent in both the pre- and post-test.

“These results are noteworthy because the strollers used in the discrimination task were not the same strollers as in the training book. Therefore infants took what they learned from the book and applied it to new pictures of strollers, suggesting the formation of a concept,” Scott says.

The findings from this study support her hypothesis that if infants learn different labels for the strollers their brains show a pattern of activity suggestive of holistic processing. This pattern is not present for infants who learned the generic level label. “By naming the strollers individually, parents taught their infants that each stroller is unique and inferred that it is important to know the difference between them.”

This is new evidence suggesting that conceptual learning begins early during the first year of life, even before infants can utter their first words. Scott suggests “parents should actively label objects, animals, people and places during the first year of life to promote conceptual development.”

In the future, the UMass Amherst research psychologist hopes to study what happens when babies are provided with individual-level labels for unfamiliar faces, for example people of a different race, to learn whether individual-level labeling will influence their recognition processing for faces of people they do not often encounter.

Lisa Scott | Newswise Science News
Further information:
http://www.umass.edu

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>