Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The TWIST® method enables the highest process speed, flexibility and strength for the laser welding of plastics

25.08.2009
The Fraunhofer Institute for Laser Technology ILT will be presenting an innovative and cost-efficient plant concept for the laser welding of plastics at this year's international trade fair for plastics processing, Fakuma. In addition, the institute will exhibit new processes to bond plastics with metal and to laser weld transparent plastics.

At Stand 4211 in Hall 4 of Fakuma (October 13 - 17, 2009, Messe Friedrichshafen), the Fraunhofer ILT will be presenting a novel, compact and industry-ready plant concept to laser weld plastics using fiber lasers.


Bonding metal to plastic with a laser-structured metallic surface and subsequent extrusion.
Fraunhofer ILT.


A TWIST®-welded microfluidics component, minimal canal width < 50 µm.
Fraunhofer ILT.

Thanks to the TWIST® radiation concept, a quick, temporal and localized beam modulation forms the basis for this new laser method. Fraunhofer ILT's researchers in Aachen have developed and qualified TWIST® - "Transmission Welding by an Incremental Scanning Technique" - an innovative process to weld plastics.

When compared to standardized laser plastic welding plants, this new concept significantly reduces investment costs as well as plant size, and is nearly maintenance-free. Furthermore, the TWIST® plant concept is characterized by its higher process speed and flexibility when structuring welding contours, as compared to conventional joining methods. Hence, it is particularly suitable for small and medium series, which require quick retooling. By using new wave lengths in combination with the TWIST® concept, operators are now able to weld transparent components together without an infrared absorber and at high speeds.

To bond metal with commercially available plastics, the Fraunhofer ILT has developed a laser-supported joining process that can dispense with using additional material. A suitable structuring of the metal's surface at high speed allows form fit joints to be attained above the bonds with high strength.

Contact person at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dipl.-Ing. Andrei Lucian Boglea
Department of Micro Technology
Telephone +49 241 8906-217
andrei.boglea@ilt.fraunhofer.de
Dipl.-Ing. Andreas Roesner
Department of Micro Technology
Telephone +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Head of the Department of Micro Technology
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Telephone +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>