Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The TWIST® method enables the highest process speed, flexibility and strength for the laser welding of plastics

25.08.2009
The Fraunhofer Institute for Laser Technology ILT will be presenting an innovative and cost-efficient plant concept for the laser welding of plastics at this year's international trade fair for plastics processing, Fakuma. In addition, the institute will exhibit new processes to bond plastics with metal and to laser weld transparent plastics.

At Stand 4211 in Hall 4 of Fakuma (October 13 - 17, 2009, Messe Friedrichshafen), the Fraunhofer ILT will be presenting a novel, compact and industry-ready plant concept to laser weld plastics using fiber lasers.


Bonding metal to plastic with a laser-structured metallic surface and subsequent extrusion.
Fraunhofer ILT.


A TWIST®-welded microfluidics component, minimal canal width < 50 µm.
Fraunhofer ILT.

Thanks to the TWIST® radiation concept, a quick, temporal and localized beam modulation forms the basis for this new laser method. Fraunhofer ILT's researchers in Aachen have developed and qualified TWIST® - "Transmission Welding by an Incremental Scanning Technique" - an innovative process to weld plastics.

When compared to standardized laser plastic welding plants, this new concept significantly reduces investment costs as well as plant size, and is nearly maintenance-free. Furthermore, the TWIST® plant concept is characterized by its higher process speed and flexibility when structuring welding contours, as compared to conventional joining methods. Hence, it is particularly suitable for small and medium series, which require quick retooling. By using new wave lengths in combination with the TWIST® concept, operators are now able to weld transparent components together without an infrared absorber and at high speeds.

To bond metal with commercially available plastics, the Fraunhofer ILT has developed a laser-supported joining process that can dispense with using additional material. A suitable structuring of the metal's surface at high speed allows form fit joints to be attained above the bonds with high strength.

Contact person at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dipl.-Ing. Andrei Lucian Boglea
Department of Micro Technology
Telephone +49 241 8906-217
andrei.boglea@ilt.fraunhofer.de
Dipl.-Ing. Andreas Roesner
Department of Micro Technology
Telephone +49 241 8906-158
andreas.roesner@ilt.fraunhofer.de
Dr.-Ing. Arnold Gillner
Head of the Department of Micro Technology
Telephone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Telephone +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:
http://www.ilt.fraunhofer.de
http://www.ilt.fraunhofer.de/eng/100031.html

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>