Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The TWIST® method enables the highest process speed, flexibility and strength for the laser welding of plastics

The Fraunhofer Institute for Laser Technology ILT will be presenting an innovative and cost-efficient plant concept for the laser welding of plastics at this year's international trade fair for plastics processing, Fakuma. In addition, the institute will exhibit new processes to bond plastics with metal and to laser weld transparent plastics.

At Stand 4211 in Hall 4 of Fakuma (October 13 - 17, 2009, Messe Friedrichshafen), the Fraunhofer ILT will be presenting a novel, compact and industry-ready plant concept to laser weld plastics using fiber lasers.

Bonding metal to plastic with a laser-structured metallic surface and subsequent extrusion.
Fraunhofer ILT.

A TWIST®-welded microfluidics component, minimal canal width < 50 µm.
Fraunhofer ILT.

Thanks to the TWIST® radiation concept, a quick, temporal and localized beam modulation forms the basis for this new laser method. Fraunhofer ILT's researchers in Aachen have developed and qualified TWIST® - "Transmission Welding by an Incremental Scanning Technique" - an innovative process to weld plastics.

When compared to standardized laser plastic welding plants, this new concept significantly reduces investment costs as well as plant size, and is nearly maintenance-free. Furthermore, the TWIST® plant concept is characterized by its higher process speed and flexibility when structuring welding contours, as compared to conventional joining methods. Hence, it is particularly suitable for small and medium series, which require quick retooling. By using new wave lengths in combination with the TWIST® concept, operators are now able to weld transparent components together without an infrared absorber and at high speeds.

To bond metal with commercially available plastics, the Fraunhofer ILT has developed a laser-supported joining process that can dispense with using additional material. A suitable structuring of the metal's surface at high speed allows form fit joints to be attained above the bonds with high strength.

Contact person at the Fraunhofer ILT
Our experts would be glad to answer any questions you may have:
Dipl.-Ing. Andrei Lucian Boglea
Department of Micro Technology
Telephone +49 241 8906-217
Dipl.-Ing. Andreas Roesner
Department of Micro Technology
Telephone +49 241 8906-158
Dr.-Ing. Arnold Gillner
Head of the Department of Micro Technology
Telephone +49 241 8906-148
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Telephone +49 241 8906-0
Fax. +49 241 8906-121

Axel Bauer | Fraunhofer Gesellschaft
Further information:

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>