Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

3-D ultrasound scanner could guide robotic surgeries

01.11.2006
Duke University engineers have shown that a three-dimensional ultrasound scanner they developed can successfully guide a surgical robot.

The scanner could find application in various medical settings, according to the researchers. They said the scanner ultimately might enable surgeries to be performed without surgeons, a capability that could prove valuable in space stations or other remote locations.

"It's the first time, to our knowledge, that anyone has used the information in a 3-D ultrasound scan to actually guide a robot," said Stephen Smith, professor of biomedical engineering at Duke's Pratt School of Engineering.

Smith and Eric Pua, a Pratt graduate student who participated in the research, reported the findings in the cover article of the November 2006 issue of the journal IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control http://www.ieee-uffc.org/tr/covers/2006toc.htm#nov06.

The work was supported by the National Institutes of Health and the National Science Foundation.

In their demonstration, the researchers used 3-D ultrasound images to pinpoint in real time the exact location of targets in a simulated surgical procedure. That spatial information then guided a robotically controlled surgical instrument right to its mark.

The scanner could be coupled to the surgeon-operated robots that are being increasingly used for performing minimally invasive "laparoscopic" surgeries on the heart or other organs, Smith said. In such operations, surgeons work through tiny "keyhole" incisions, and the new scanner would provide surgeons a more realistic view of the organ they are working on.

"All the technology is available," Smith said. "We just need to make the connections between the ultrasound scanner and the robots now in use by surgeons. There are no technological barriers to doing that right away."

Among other applications, surgeons could use the 3-D scanner to spot potential tumors in real time during biopsy procedures, making a diagnosis of cancer harder to miss, the engineers said. Physicians today must rely on still images, such as CT scans, of a patients' organs captured prior to biopsy to locate lesions suspected to be cancer.

As artificial intelligence technology improves in the coming decades, the scanner might even be able to guide surgical robots without the help of a surgeon, the researchers said.

The 3-D ultrasound probe has yet to be tested in human patients, Smith said, but he added that his team believes the technology is ready for clinical trials.

The Duke team in 1987 developed the first-ever 3-D ultrasound scanner for imaging the heart in real time from outside the body. As technology enabled ever smaller ultrasound arrays, the researchers engineered probes that could fit inside catheters threaded through blood vessels to view the vasculature and heart from the inside.

Earlier this year, the team reported another advance: a 3-D ultrasound device including 500 tiny cables and sensors packed into a tube 12 millimeters in diameter -- small enough to be inserted through the incisions required for laparoscopic surgeries http://www.pratt.duke.edu/news/?id=417. The researchers then showed that the device can produce actual 3-D images of the beating hearts in animals.

The team has since demonstrated that the scanner also can be used to laparoscopically image other organs, including the spleen, liver and gall bladder.

In the current study, the researchers used the scanner to identify coordinates denoting the precise location of an artificial lesion inside a type of artificial organ, or "phantom," commonly used for testing imaging technologies. The researchers then entered the coordinates into a simple robot that controlled a biopsy needle, and the robot did the rest.

The researchers also have used the scanner to guide the biopsy robot toward a designated target in the gall bladder of an animal that had died. (An ultrasound video of the needle traveling toward and then precisely puncturing the animal's organ can be downloaded at http://transducers.bme.duke.edu/movies.php.)

"Once the robot takes over, it sends the needle to within about 1.5 millimeters of the center of the target," Smith said. "That's pretty good accuracy."

The 3-D ultrasound scanner also has the advantage of seeing the interior of organs, Smith said. Optical laparoscopes, in contrast, provide surgeons only a view of organs' outer surfaces.

"Two-dimensional laparoscopic ultrasound has seen increased use as a surgical aide in general, gynecological and urological procedures," Pua added. "Our results show that the application of real-time 3-D ultrasound to these surgical procedures may increase information available to the surgeon and serve as an additional guidance tool."

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>