Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser Instead Of A Diamond Saw


St. Petersburg physicists have developed a plant that allows to cut sapphire crystals into almost ideally smooth plates being fractions of millimeter thick. The approach suggested by the researchers fundamentally differs from the traditional one. They suggest that sapphire should not be sawn by a saw, but split by laser.

It is quite common that a title like “A plant for laser scribing of sapphire wafers” would surprise an ordinary person but it sounds like music for specialists. It is an exceptionally useful, and unique device produced in St. Petersburg by the specialists of the MULTITECH company. It is intended to produce multiple individual finished microchips out of a whole sapphire plate with marked chip structures called “wafers”.

Microchips on sapphire and quartz substrates have been made so far in a simple and rough way: the crystal is slit by a thin metal disk with diamantine. The process is extremely unproductive. On the one hand, the disc possesses its own thickness that makes hundreds of microns. On the other hand, due to such rough processing the edges of the slit plates are covered by cracks all over. That is why a major part of the material is wasted – only one third or a quarter of feedstock can be used for the above purpose.

The device designed by the specialists of the MILTITECH company is based on fundamentally different principles. The device does not saw a crystal but incises or scribes it by laser. Speaking to the point, the device using a special laser produces deep and straight cracks in the crystal in previously selected spots and in preset direction. These cracks allow to easily and simply break the sapphire plate “cracked” by laser into multiple tiny microchips – for example, into small square of 1 mm x 1 mm in dimension. This is done by a small and also original instrument resembling a diminutive photograph cutter.

Peculiarity of the device is that instead of a powerful laser it is suggested to use a low energy laser but with a supershort pulse time, the so-called a picosecond one. An original optical system is also used allowing to focus the laser beam into a very thin sheaf being only several microns in diameter. As a result, the beam’s energy concentrates in space and time and splits the crystal from inside without evaporating it. The device is shooting by short laser bursts – i.e., series of picosecond impulses. That is how point defects are formed resembling a perforation line. It is along these lines that the crystal splits, i.e. a deep crack goes from one defect to another, joining them.

Firstly, these transverse cracks are small and much less numerous than those formed while cutting the crystal by a diamond disc, and secondly, the cracks partly “overgrow” by themselves. The researchers made sure of that due to a microscopical television system also designed by them. Under computer control, the “cutting” is performed quickly and automatically. But there is one more valuable advantage. As the beam can be focused with extreme precision, the crystal can be cut when it is in the plastic packing. The packing will not be damaged by the laser beam as it is not focused on packing. This peculiarity is difficult to overestimate. It gives the opportunity to process chips not in the specially equipped facilities with filtered air –the so-called clean rooms, but in ordinary ones.

Sergey Komarov | alfa
Further information:

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>