Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Laser Instead Of A Diamond Saw


St. Petersburg physicists have developed a plant that allows to cut sapphire crystals into almost ideally smooth plates being fractions of millimeter thick. The approach suggested by the researchers fundamentally differs from the traditional one. They suggest that sapphire should not be sawn by a saw, but split by laser.

It is quite common that a title like “A plant for laser scribing of sapphire wafers” would surprise an ordinary person but it sounds like music for specialists. It is an exceptionally useful, and unique device produced in St. Petersburg by the specialists of the MULTITECH company. It is intended to produce multiple individual finished microchips out of a whole sapphire plate with marked chip structures called “wafers”.

Microchips on sapphire and quartz substrates have been made so far in a simple and rough way: the crystal is slit by a thin metal disk with diamantine. The process is extremely unproductive. On the one hand, the disc possesses its own thickness that makes hundreds of microns. On the other hand, due to such rough processing the edges of the slit plates are covered by cracks all over. That is why a major part of the material is wasted – only one third or a quarter of feedstock can be used for the above purpose.

The device designed by the specialists of the MILTITECH company is based on fundamentally different principles. The device does not saw a crystal but incises or scribes it by laser. Speaking to the point, the device using a special laser produces deep and straight cracks in the crystal in previously selected spots and in preset direction. These cracks allow to easily and simply break the sapphire plate “cracked” by laser into multiple tiny microchips – for example, into small square of 1 mm x 1 mm in dimension. This is done by a small and also original instrument resembling a diminutive photograph cutter.

Peculiarity of the device is that instead of a powerful laser it is suggested to use a low energy laser but with a supershort pulse time, the so-called a picosecond one. An original optical system is also used allowing to focus the laser beam into a very thin sheaf being only several microns in diameter. As a result, the beam’s energy concentrates in space and time and splits the crystal from inside without evaporating it. The device is shooting by short laser bursts – i.e., series of picosecond impulses. That is how point defects are formed resembling a perforation line. It is along these lines that the crystal splits, i.e. a deep crack goes from one defect to another, joining them.

Firstly, these transverse cracks are small and much less numerous than those formed while cutting the crystal by a diamond disc, and secondly, the cracks partly “overgrow” by themselves. The researchers made sure of that due to a microscopical television system also designed by them. Under computer control, the “cutting” is performed quickly and automatically. But there is one more valuable advantage. As the beam can be focused with extreme precision, the crystal can be cut when it is in the plastic packing. The packing will not be damaged by the laser beam as it is not focused on packing. This peculiarity is difficult to overestimate. It gives the opportunity to process chips not in the specially equipped facilities with filtered air –the so-called clean rooms, but in ordinary ones.

Sergey Komarov | alfa
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>