Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Physicists Build New Microscope to Study Electron Spin

23.06.2004


Current electronic technologies can’t create smaller computers and other devices because they are reaching physical limitations, so University of Arkansas scientists seek to harness an electron’s spin to create tiny machines with large memories. To do this, they have built a microscope that may allow them to be the first researchers to measure the properties of electron spin injection in conducting materials.

Paul Thibado, associate professor of physics, won a $370,000 grant from the National Science Foundation to measure the properties of a spin-based transistor using a customized, two-tip Scanning Tunneling Microscope (STM) system. This work builds on a previous NSF grant of $760,000, which was used to create the customized STM.

Electrons have spin in addition to charge, but in the past this property has been little used or studied. By understanding and using the different states achieved when an electron’s spin rotates, researchers could potentially increase information storage a million fold. This would allow vast quantites of information to be stored in a space the size of a sugar cube or transmitted from one tiny device to another in the blink of an eye.



Today’s transistors store information by using two different states to save data or create words on the computer. Each bit in a given piece of information—a word or a computer program—can either be “on” or “off,” meaning that the possibilities are based on two, or binary logic. However, the different states created when an electron’s spin rotates could allow researchers to increase that base number from two to 10. This would create massive information storage and transmission capabilities.

Researchers currently use STMs to inject electrons of a certain spin into a conducting material. However, they have not been able to study what happens to the electrons as they pass through the material because they would need a second STM to create a transistor, a miniature electronic switch used to power televisions, cars, radios, home appliances and computers. A traditional transistor consists of a source, a drain and a gate. When an electric field is placed on the gate, current moves from the source to the drain. Placing two STM tips next to one another won’t work—the tips remain too far apart to create a transistor.

Thibado and his colleagues proposed building a different kind of instrument, one with two STMs placed at right angles to one another. This allows the tips to get close enough—about 10 nanometers apart—to create an effective detection device. Thibado and his colleagues will use one tip to inject electrons of a certain spin into a surface, while the other acts as a detection device, reading the actual spin of the injected electrons. By applying a magnetic field, the researchers can then change the electrons’ spins, creating a field-effect transistor.

The researchers will use computer-operated nano-positioning systems to move the STM tips with nanoscale precision.

“With this instrument, we’re going to open up a whole new research area where people can study the properties of spin,” Thibado said.

First, however, the researchers must learn more about how spin works, and Thibado’s new equipment will allow that to happen. The UA team will use the modified instruments to measure the current and voltage properties of a spin-dependent transistor, examine the characteristics of the transistor at different temperatures and change the distance between the two STMs to determine the device’s effectiveness at various distances. They also will use different materials on the tip of the STMs to determine how they affect the transistor’s properties.

| newswise
Further information:
http://www.uark.edu

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>