Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers Developing Technology to Detect Hidden Mold Behind Gypsum Wallboard

30.04.2004


Researchers are testing the feasibility of using radar technology to detect mold behind gypsum wallboard. A common problem, hidden mold can cause serious structural damage and health problems before homeowners discover it.


Researchers are testing the feasibility of using radar technology to detect mold behind gypsum wallboard. They are using a signal processing algorithm and high-sensitivity, laboratory-size radar system recently developed by the Georgia Tech Research Institute.
Georgia Tech Photo: Gary Meek



Hoping to develop a non-destructive and less expensive method than is now available to detect mold behind walls, Georgia Tech Research Institute (GTRI) scientists are collaborating with humidity control expert Lew Harriman of Mason-Grant Consulting in a two-year feasibility study primarily funded by the U.S. Department of Housing and Urban Development (HUD) through its Healthy Homes Initiative. The Air-Conditioning and Refrigeration Technology Institute in Washington, D.C., and Munters Corporation in Norcross, Ga., are also providing funds for the study.

"Mold is a common problem, especially in humid, southern climates, but people are often not aware of it because it’s occurring behind a painted or wallpapered wall," said GTRI research scientist Victor DeJesus. "Then it’s too late when they realize it. The wallboard must be replaced."


In addition to degrading structures, mold can emit smelly and potentially harmful compounds into the air, DeJesus added.

Researchers are conducting experiments on damp, mold-infested wallboard panels. Initially, they are using a signal processing algorithm and high-sensitivity, laboratory-size radar system recently developed by GTRI principal research scientist Gene Greneker and senior research scientist Otto Rausch.

They will determine the feasibility of using millimeter-wave, extremely high-resolution radar to detect mold in these panels based on unique characteristics of the mold backscatter signature, extracted by unique signal processing techniques. Also, Harriman will investigate the possibility that X-ray and gamma-ray technologies might work. And later, the researchers will examine the effectiveness of these techniques in detecting mold in other indoor building materials, including ceiling tiles typically used in commercial structures.

Ultimately, the researchers hope to produce a small, handheld prototype unit - something akin to a stud finder - to lay the technical foundation for a commercial product that contractors could purchase for about $1,000 to $2,000 and easily learn to use. They would then test that prototype in actual houses.

Radar expert Greneker envisions a system that would map mold behind a wall. If dampness is indicated by the radar-based device, then a contractor could know more precisely where to probe for damage, he explained.

"We think this technology is on the cutting edge for detecting mold behind walls," Greneker said. "Its potential is immense."

In an initial experiment that began in January 2004, researchers used a small panel of wallboard -- which is very porous -- soaked in water and injected with non-toxic fungal spores. In one month’s time, those spores germinated as the wallboard was kept in a high-humidity environment. Mold thrives in damp wallboard because of its paper-based encasing, DeJesus explained.

Researchers then used the radar system to scan the wallboard panel, and they were encouraged by the early results. Now, they are tweaking the algorithm to enable the radar system to discriminate between the mold backscatter signature and nails, boards and wiring that would be found in and behind wallboard, Greneker said. They must also find ways to reduce the system’s cost, while retaining its sensitivity, he added.

This experiment and a larger-scale one that began this spring simulate what might happen to wallboard dampened by a home’s leaking pipe or roof, or from condensation formed by a HVAC system, or even from high-humidity conditions, DeJesus said.

If left unattended, mold can destroy structures and cause serious health problems. The researchers cite a well-known case in which a jury awarded $32 million in damages to plaintiffs in Texas who sued over a neurological condition and asthma their doctors attributed to mold in the home they purchased.

In less serious cases, the consequences can still entail a lengthy and costly repair process, the researchers say. A contractor must pinpoint the damaged area by drilling holes in the wall. Rotting wallboard, insulation and, perhaps, studs must be removed, the area dried and then decontaminated before new wallboard can be installed.

Jane Sanders | Georgia Tech
Further information:
http://gtresearchnews.gatech.edu/newsrelease/moldradar.htm

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>