Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Keen Sense Of Smell

31.10.2003


A unique device has been designed by the Moscow scientists – specialists of the Institute of General Physics, Russian Academy of Sciences, supported by funding from the Russian Foundation for Basic Research. The device not only helps to discover in a few seconds the minute quantities of narcotics and explosives in the air, but to identify and even count every single molecule of these dangerous substances. For the first time has the man managed to approach the creation of device more sensitive than the dog’s nose, besides, it is impossible to either divert or frighten or distract the device from trace.



As a matter of fact, all known methods – and there are several of them – either need preliminary division of air samples (that decreases significantly the sensitivity, and increases the duration of analysis and complicates the detection process) or determine the structure of a substance by its fragments. If the structure of a compound is complicated, and if this is not the sole substance in the sample (this is a common case), then instrumental inspection methods fail the fulfil the task. The task is beyond their “sense of smell”. That is why specially trained dogs have to be involved as their sense of smell is several times more sensitive than that of a man (which is natural), and even of that of the most complicated devices. However, here occur other problems: for instance, a handful of pepper completely deprives a four-legged “smeller” of an opportunity to spot the required scent. Besides, the dog, like human beings, may be in low spirits, or may have blocked nose, the dog can be diverted or distracted from trace – the criminal world has invented a lot of means. Therefore, the device is needed – an unbiassed, reliable and at the same time highly sensitive and selective one. The Moscow researchers have managed to develop such a device.

The device is based on a completely new principle developed by the Institute of General Physics (Russian Academy of Sciences) jointly with the University of Montana, USA. The essence of the principle is as follows: molecules of the sought substances first “settle” – they are sorbed on a specially processed silicic surface and interact with it. Then the laser beam, figuratively speaking, knocks the molecules off the surface but in a slightly different form. They have become positive ions, which differ from the original molecules by one thing only – a hydrogen ion (proton) is either added to or removed from them.


Such ions are easy enough to analyze – with the help of the so-called time-of-flight mass-spectrometer. The ions are sped up in the mass-spectrometer, and their mass is determined by the time of flight towards the target – and they are respectively identified.

“I should note we are very lucky, says Sergey Nikiforov, Ph. D. (Physics and Mathematics), project manager. The most widespread narcotics and explosives, and the majority of poisonous substances are nitrogen-containing compounds, possessing one property in common – the ability to participate in the proton exchange reactions (metathesis). Thanks to that, these substances can be analyzed with the help of our method – to be sorbed on silicon and to be protonated (or deprotonated) by the laser beam. There is no complete understanding of the ionization process on the rough surface yet and we are carrying out intense basic research supported by the Russian Foundation for Basic Research. Nevertheless, we have managed to utilize the fact, practically the gift of fortune or nature.”

Preliminary, the developers had to solve two complicated tasks. Firstly, to secure that the majority of the sought molecules “get stuck” to the sorbent – i.e., silicon wafer. To this end, the researchers made the silicon wafer rough, having significantly increased thereby the surface area of silicon.

Seconly, the standard sample was required. It was needed to create extremely low concentrations of the sough substances or their analogues, strictly quantitatively – in minor amounts of molecules. It is impossible to achieve that by simple dilution – this is too inaccurate. The method offered by the developers is exceptionally witty. The researchers have applied a well-known principle – the so-called piezosensitive element. This is a quartz plate, but with a preliminary covering, the weight of which can be measured by the oscillation frequency of the plate. The scientists suggested that the standard sample substance should be introduced into this covering like in the matrix. The substance gets evaporated in the vacuum chamber, and the difference of weight – and accordingly, the quantity of the substance, which got into the bulk of the chamber, - can be precisely measured by the oscillation frequency of this piezoelement.

As a result, the scientists have succeeded not only in developing a fundamentally new method, which allows to detect (as well as dogs do) the explosives and narcotics by minute (track) quantities of their vapor in the air. The researchers have also managed to produce and standardize the first pre-production model of such analyzer. Now they need to optimize its parameters and to develop the software so that the device could operate automatically. According to the inventors, this can be done within a year subject to sufficient funding of the project.

Sergey Komarov | alfa

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>