Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Jefferson Lab Tech Associate Invents Lockout Device for Equipment with Removable Power Cords

28.06.2002


It was the early 1990s and building Jefferson Lab’s Continuous Electron Beam Accelerator was in high gear. The Accelerator Division was busy installing some 30 vacuum ion pumps in the tunnel. Simultaneously, above ground in the long, low service buildings sitting over the tunnel, workers were installing and wiring the 7 kV, high-voltage power supplies for those ion pumps.



"With the procedures we had in place we were never in danger," recalled Rick Gonzales, Accelerator Electronics Support (AES) technical associate, "but we didn’t want to take any unnecessary chances while we were working on the pumps, with the power supplies remotely mounted. We searched catalogues and asked vendors for a good lockout device we could use on the pumps, but nothing existed for equipment with removable power cords."

"So we made do with duct tape and a magic marker," Gonzales continued. "We would cover a pump’s power-cord connector with tape so the cord couldn’t be plugged in. And with the marker we wrote ’don’t plug in’ across the tape. It was our added safety measure while we did the work. This way no one could power up the supply while we were working on the pump."


Trying to find a better way to deal with this safety concern, Gonzales came up with an idea for a lockout device, but it just didn’t work out. Then about seven years later another design idea hit him. "This one was it. I just knew it," Gonzales said. "I carved a prototype out of a piece of plastic. I was really excited." After developing a working model, he worked with the Lab’s Legal counsel and the Technology Transfer office to patent the device."

Jefferson Lab’s contract manager - SURA - or the Southeastern Universities Research Association, was awarded the patent on the lockout device in October 1999. During the year and a half it took for the patent to be awarded, Gonzales and the Lab became interested in seeing a manufacturer bring the device to the commercial market. "A lockout device for an electronic component with a removable power cord could be used for both safety and security purposes on so many different types of equipment," Gonzales explained.

He talked with several companies that sell electronic instrumentation and safety equipment; but no one was interested in commercializing the lockout mechanism. He also talked with several companies that produce plastic and rubber molded parts (needed to build the device) to determine what it would take and how much it would cost to commercially produce the device.

Gonzales was frustrated to find that companies just weren’t interested in building the lockout. He found a few vendors interested in selling the lockout, but no one wanted to produce the simple, straightforward device. (Two pieces of molded plastic, a hunk of vulcanized rubber, a small metal plate, a nut and a screw are all that it consists of.) "The companies just didn’t want to take on the risk or cost of bringing a new product to market," he said.

Then about a year ago he approached his local Chamber of Commerce Business Development Center to see if they could offer him any advice. They suggested that he sit in on their Small Business Startup class. "While I was taking the class, I realized: I knew this device inside and out. I knew how much it would cost to procure each part and how much it could be sold for. I knew which vendors could produce the needed parts," Gonzales commented. "It was right there in my face. I had done all the research someone does to set up a small business. A week later my wife and I made a licensing proposal to the Lab and after the agreement was signed we created Southside Safety, Inc. and started commercial production of the LOCKOUT 320TM - the perfect device for securing equipment that uses a removable input power cord."

All of this extra work - on Rick’s own time - is now making the LOCKOUT 320small>TM commercially available to the public. Despite a lot of expense and discouragement, Gonzales continues believing in the potential for the lockout device, and he’s persevered. For more information about the LOCKOUT 320TM, visit www.southsidesafetyinc.com.

Any company or small business may submit a proposal to obtain a license of rights from SURA to use, manufacture or sell a SURA invention or patent.

Linda Ware | EurekAlert!

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>