Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTB Terahertz calibration satisfies US laser manufacturer

09.11.2009
Coherent Inc., a world leader in laser technology with headquarters in the US, and the PTB have joined their expertise in Terahertz technology

Terahertz radiation still lies in a metrological no man's land – a metrology gap. The Physikalisch-Technische Bundesanstalt (PTB) can now close this gap. For the first time, a commercial Terahertz laser was traced back to the international system of units (SI) by measuring its output power absolutely.

PTB achieved this success with a power meter which had been calibrated beforehand against a cryogenic radiometer, Germany's primary standard for power measurement of electromagnetic radiation. Therefore, this laser, namely a SIFIR-50 manufactured by the US company Coherent Inc., is the first THz laser in the field with a reliably proven output power enabled by a novel calibration capability set up at the PTB.

Terahertz radiation refers to frequencies from 0.3 THz to 10 THz, which are located in between microwaves and infrared radiation at long wavelengths. These are the limits of two different mechanisms for generating radiation: microwaves are produced electronically by semiconductors and infrared radiation in contrast, optically by means of lasers. This Terahertz gap has only recently been penetrated, but it shows to be promising for a variety of applications. Meanwhile, Terahertz radiation is used for spectroscopy, analytical science and astronomy. As technological innovations have noticeably improved the generation and detection of THz radiation, more and more areas have been added: testing of materials, security checks at airports, biological and medical science, quality inspection of foodstuffs and agricultural goods, global environmental monitoring and information and communication techniques, as well. All of these applications benefit from reliable power measurement in the THz region.

That is why a world leader in laser technology, the company Coherent Inc., and a leading institute of metrology, the Physikalisch-Technische Bundesanstalt, have joined forces to improve the measurement of the power of Terahertz lasers and to trace it back to the SI units by comparing it to a national standard.

The Coherent SIFIR-50 laser which was operated at 2.5 THz for the first power measurement is the core instrument of a new facility for the determination of the THz radiant power in SI units and for the calibration of THz detectors. It is a far-infrared molecular gas laser pumped by an integrated, frequency stabilized, tunable 50 W CO2 laser. Dr. Andreas Steiger of PTB Berlin explains: "The unique feature of the system is its Fabry-Perot lock used to control the operating frequency of the CO2 laser which is optimal for pumping the vibrational transitions of the gas molecules". Combined with its thermally-compensated THz resonator and pump optics design, the SIFIR-50 delivers stable THz radiation, tunable from 1 THz to 7 THz, to several rotational transitions of the molecules in use. The wide tuning range is four times larger than the whole visible spectrum and contains a variety of discrete THz lines in many different gases. Steiger is confident: "The performance and beam quality of the laser enables PTB to take a large step in bridging the metrology gap between ultra high-frequency electronics and far-infrared optics in the near future."

Contact:

Dr. Andreas Steiger, PTB Working Group 7.34 "Terahertz Radiometry", Tel. (+49) 30 3481 7532, e-mail: Andreas.Steiger@PTB.de

Petra Wallenta, Coherent, PR Europe, e-mail: Petra.Wallenta@coherent.com, Internet: http://www.coherent.com.

Dr. Andreas Steiger | EurekAlert!
Further information:
http://www.PTB.de
http://www.coherent.com

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>