Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PTB Terahertz calibration satisfies US laser manufacturer

09.11.2009
Coherent Inc., a world leader in laser technology with headquarters in the US, and the PTB have joined their expertise in Terahertz technology

Terahertz radiation still lies in a metrological no man's land – a metrology gap. The Physikalisch-Technische Bundesanstalt (PTB) can now close this gap. For the first time, a commercial Terahertz laser was traced back to the international system of units (SI) by measuring its output power absolutely.

PTB achieved this success with a power meter which had been calibrated beforehand against a cryogenic radiometer, Germany's primary standard for power measurement of electromagnetic radiation. Therefore, this laser, namely a SIFIR-50 manufactured by the US company Coherent Inc., is the first THz laser in the field with a reliably proven output power enabled by a novel calibration capability set up at the PTB.

Terahertz radiation refers to frequencies from 0.3 THz to 10 THz, which are located in between microwaves and infrared radiation at long wavelengths. These are the limits of two different mechanisms for generating radiation: microwaves are produced electronically by semiconductors and infrared radiation in contrast, optically by means of lasers. This Terahertz gap has only recently been penetrated, but it shows to be promising for a variety of applications. Meanwhile, Terahertz radiation is used for spectroscopy, analytical science and astronomy. As technological innovations have noticeably improved the generation and detection of THz radiation, more and more areas have been added: testing of materials, security checks at airports, biological and medical science, quality inspection of foodstuffs and agricultural goods, global environmental monitoring and information and communication techniques, as well. All of these applications benefit from reliable power measurement in the THz region.

That is why a world leader in laser technology, the company Coherent Inc., and a leading institute of metrology, the Physikalisch-Technische Bundesanstalt, have joined forces to improve the measurement of the power of Terahertz lasers and to trace it back to the SI units by comparing it to a national standard.

The Coherent SIFIR-50 laser which was operated at 2.5 THz for the first power measurement is the core instrument of a new facility for the determination of the THz radiant power in SI units and for the calibration of THz detectors. It is a far-infrared molecular gas laser pumped by an integrated, frequency stabilized, tunable 50 W CO2 laser. Dr. Andreas Steiger of PTB Berlin explains: "The unique feature of the system is its Fabry-Perot lock used to control the operating frequency of the CO2 laser which is optimal for pumping the vibrational transitions of the gas molecules". Combined with its thermally-compensated THz resonator and pump optics design, the SIFIR-50 delivers stable THz radiation, tunable from 1 THz to 7 THz, to several rotational transitions of the molecules in use. The wide tuning range is four times larger than the whole visible spectrum and contains a variety of discrete THz lines in many different gases. Steiger is confident: "The performance and beam quality of the laser enables PTB to take a large step in bridging the metrology gap between ultra high-frequency electronics and far-infrared optics in the near future."

Contact:

Dr. Andreas Steiger, PTB Working Group 7.34 "Terahertz Radiometry", Tel. (+49) 30 3481 7532, e-mail: Andreas.Steiger@PTB.de

Petra Wallenta, Coherent, PR Europe, e-mail: Petra.Wallenta@coherent.com, Internet: http://www.coherent.com.

Dr. Andreas Steiger | EurekAlert!
Further information:
http://www.PTB.de
http://www.coherent.com

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>