Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

MIT researchers unveil autonomous oil-absorbing robot

30.08.2010
Robot could absorb up to 20 times its own weight in oil

Using a cutting edge nanotechnology, researchers at MIT have created a robotic prototype that could autonomously navigate the surface of the ocean to collect surface oil and process it on site.


The first Seaswarm prototype was tested in the Charles River in mid-August 2010. The vehicle’s flexible conveyor belt easily adapted to surface waves and the photovoltaic-covered ‘head’ maximized exposure to the sun. Image courtesy of the Senseable City Lab

The system, called Seaswarm, is a fleet of vehicles that may make cleaning up future oil spills both less expensive and more efficient than current skimming methods. MIT’s Senseable City Lab will unveil the first Seaswarm prototype at the Venice Biennale's Italian Pavilion on Saturday, August 28. The Venice Biennale is an international art, music and architecture festival whose current theme addresses how nanotechnology will change the way we live in 2050.

The Seaswarm robot uses a conveyor belt covered with a thin nanowire mesh to absorb oil. The fabric, developed by MIT Visiting Associate Professor Francesco Stellacci, and previously featured in a paper published in the journal Nature Nanotechnology, can absorb up to twenty times its own weight in oil while repelling water. By heating up the material, the oil can be removed and burnt locally and the nanofabric can be reused.

“We envisioned something that would move as a 'rolling carpet' along the water and seamlessly absorb a surface spill,” said Senseable City Lab Associate Director Assaf Biderman. “This led to the design of a novel marine vehicle: a simple and lightweight conveyor belt that rolls on the surface of the ocean, adjusting to the waves.”

The Seaswarm robot, which is 16 feet long and seven feet wide, uses two square meters of solar panels for self-propulsion. With just 100 watts, the equivalent of one household light bulb, it could potentially clean continuously for weeks.

By autonomously navigating the water’s surface, Seaswarm proposes a new system for ocean-skimming and oil removal.

Video: Senseable City Lab

Traditional skimmers are attached to large vessels and need to constantly return to the shore for maintenance. Over 800 skimmers were deployed in the Gulf of Mexico during the summer of 2010; however, it is estimated that these skimmers collected only three percent of the surface oil.

“Unlike traditional skimmers, Seaswarm is based on a system of small, autonomous units that behave like a swarm and 'digest' the oil locally while working around the clock without human intervention,” explained Senseable City Lab Director Carlo Ratti.

Using swarm behavior, the units will use wireless communication and GPS and manage their coordinates and ensure an even distribution over a spill site.. By detecting the edge of a spill and moving inward, a single vehicle could clean an entire site autonomously or engage other vehicles for faster cleaning.

“We hope that giant oil spills such as the Deepwater Horizon incident will not occur in the future, however, small oil leaks happen constantly in off shore drilling,” Ratti said. “The brief we gave ourselves was to design a simple, inexpensive cleaning system to address this problem.”

MIT researchers estimate that a fleet of 5,000 Seaswarm robots would be able to clean a spill the size of the gulf in one month. The team has future plans to enter their design into the X-Prize’s $1 million oil-cleanup competition. The award is given to the team that can most efficiently collect surface oil with the highest recovery rate.

Senseable City Lab’s initial Seaswarm prototype will be unveiled at the Venice Biennale’s Italian Pavilion on Saturday, August 28. Visitors will be able to interact with the prototype and view a video on how the vehicle was constructed and how it operates. The Venice Biennale runs from August 29 to November 21, 2010.

The members of Senseable’s Seaswarm team include Luigi Farrauto (Team Leader), Adam Pruden, Carnaven Chiu, Diego Malinoff, Malima Wolf, David Anderson, Sey Min, Rex Britter, Lindsey Hoshaw, Jennifer Dunnam, David Lee, Dietmar Offenhuber, Jan Kokol, Phil Salesses, Matthew Kai Johnson Roberson, Assaf Biderman and Carlo Ratti. The installation at the Venice Biennale was developed in collaboration with Walter Nicolino, Giovanni de Niederhausern, Samuel Colle Dominguez Maldonado, Andrea Cassi, Alberto Bottero and Filipa Carvalho who are part of Walter Nicolino and Carlo Ratti’s architecture office, Carlorattiassociati, in Torino, Italy.

Jen Hirsch | MIT media relations
Further information:
http://www.mit.edu

More articles from Process Engineering:

nachricht Innovative process for environmentally friendly manure treatment comes onto the market
03.05.2018 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

nachricht No compromises: Combining the benefits of 3D printing and casting
23.03.2018 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>