Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Instant control for laser welding

10.03.2009
Car doors are usually assembled from several sections of sheet metal which are welded together by laser.

The laser beam moves over the slightly overlapping sheets and melts them in a spot measuring several tenths of a millimeter, producing a so called full penetration hole that closes again when the laser beam moves on.

It is most important for the laser output power to be set correctly – if it is too low the strength of the welding connection is reduced because it does not extend over the full cross section of the metal sheets, if it is too high the laser cuts right through them. Until now welders have gauged the right laser output by trial and error and then kept it constant.

A complicating factor exists, however, in that the protective glass gets dirty after a while and lets less laser light through onto the metal. If this happens earlier than usual, hours can pass before it is noticed and the metal sheets may not be properly welded.

Today, welding processes are only monitored without adjustment of the laser power because the achievalble frame rate of about thousand evaluated images per second is not sufficient. For a closed loop control, frame rates of more than 10 kilohertz – equivalent to 10,000 images per second – are needed for a robust surveillance of the rapidly moving full penetration hole.

Researchers at the Fraunhofer Institute for Physical Measurement Techniques IPM in Freiburg have now developed a control system for laser welding processes which adapts the output to the given situation. "Our system analyzes 14,000 images per second and uses the acquired data to adjust the laser output," explains IPM project manager Andreas Blug. So how does the system manage to analyze the images more than ten times faster than conventional software? "We use special cameras in which a tiny processor is integrated in each pixel. All these processors – 25,000 in total – work simultaneously. In conventional image processing systems the data are handled consecutively by just a small number of computer processors," says Blug.

The new systems are referred to as "Cellular Neural Networks" (CNN). Just a few microseconds after the image is taken the camera delivers an analyzed picture of the contours of the full penetration hole. For small holes the system increases the output, for large ones it reduces it. "In developing this adjustment system we have achieved the first industrial application of CNN technology," says Blug. A prototype already exists, and the researchers now intend to test the system in production.

Andreas Blug | EurekAlert!
Further information:
http://www.ipm.fraunhofer.de

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>