Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flowing water energizes minerals

06.06.2014

Researchers from Mainz discover that liquid flow changes surface chemistry of minerals, with implications for geological sciences.

A collaborative research team from the Max Planck Institute for Polymer Research (MPIP) in Germany and the University of Namur in Belgium discovered a fundamental, yet unnoticed, phenomenon that motion of water along a mineral surface changes the charge of that surface. The researchers published their finding in Science.

The international research team in Mainz led by Mischa Bonn studied how moving water, like in riverbeds or creeks, affects mineral surfaces and their dissolution. Remarkably, water flow along fluorite and glass surfaces makes these surfaces more positively charged. In the case of fluorite, a 100-fold increase in acid concentration was required to induce similar effects in static water.

Water molecules as reporters

... more about:
»Polymer »Water »acid »experiments »ions »phenomenon »surfaces

Surfaces of minerals acquire a charge when immersed in water, as part of the minerals can be released from the surface as charged ions. This was known, but that moving water can change the surface charge was entirely unexpected. The research team in Mainz measured the surface charge of immersed minerals using the water molecules directly at the interface as reporters.

Water molecules have a positive and a negative end, and align toward the surface, depending on the surface charge. The interfacial water molecules were interrogated by overlapping two laser pulses of different color at the liquid-mineral interface, whereby a new color can be generated that provides extremely specific information about the interfacial region.

In this manner, both the orientation (pointing up- or downwards) and the number of oriented water molecules can be directly measured, which provides direct access to the surface charge.

The experiments show that flowing a liquid in contact with minerals induces a preferential dissolution of specific mineral constituents. In the case of fluorite, negatively charged ions are preferentially dissolved while positively charged ions remain at the mineral surface. The researchers were even able to show that the sign of the surface charge can be controlled with flow, so that water molecules could be made to reorient, depending on the presence or absence of flow.

The observed phenomenon seems to be rather ubiquitous in geology. Particularly because this phenomenon occurs not only for fluorite, but also for silica surfaces – silicates constitute more than half of the minerals in the earth crust. “These new insights on the fundamentals of mineral dissolution force us to reconsider well-established theories in weathering and environmental sciences to take into account changes in surface charge in addition to well-documented surface erosion.”, explains Mischa Bonn.

Contact 

Prof. Dr. Mischa Bonn

Director

Phone:+49 6131 379-161
Email:bonn@...

Homepage 

Publication

 
1
Dan Lis, Ellen H. G. Backus, Johannes Hunger, Sapun H. Parekh, and Mischa Bonn
Science, 6th June 2014; doi: 10.1126/science.1253793 

Prof. Dr. Mischa Bonn | Max Planck Institute for Polymer Research

Further reports about: Polymer Water acid experiments ions phenomenon surfaces

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>