Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Flowing water energizes minerals

06.06.2014

Researchers from Mainz discover that liquid flow changes surface chemistry of minerals, with implications for geological sciences.

A collaborative research team from the Max Planck Institute for Polymer Research (MPIP) in Germany and the University of Namur in Belgium discovered a fundamental, yet unnoticed, phenomenon that motion of water along a mineral surface changes the charge of that surface. The researchers published their finding in Science.

The international research team in Mainz led by Mischa Bonn studied how moving water, like in riverbeds or creeks, affects mineral surfaces and their dissolution. Remarkably, water flow along fluorite and glass surfaces makes these surfaces more positively charged. In the case of fluorite, a 100-fold increase in acid concentration was required to induce similar effects in static water.

... more about:
»Polymer »Water »acid »experiments »ions »phenomenon »surfaces

Water molecules as reporters

Surfaces of minerals acquire a charge when immersed in water, as part of the minerals can be released from the surface as charged ions. This was known, but that moving water can change the surface charge was entirely unexpected. The research team in Mainz measured the surface charge of immersed minerals using the water molecules directly at the interface as reporters.

Water molecules have a positive and a negative end, and align toward the surface, depending on the surface charge. The interfacial water molecules were interrogated by overlapping two laser pulses of different color at the liquid-mineral interface, whereby a new color can be generated that provides extremely specific information about the interfacial region.

In this manner, both the orientation (pointing up- or downwards) and the number of oriented water molecules can be directly measured, which provides direct access to the surface charge.

The experiments show that flowing a liquid in contact with minerals induces a preferential dissolution of specific mineral constituents. In the case of fluorite, negatively charged ions are preferentially dissolved while positively charged ions remain at the mineral surface. The researchers were even able to show that the sign of the surface charge can be controlled with flow, so that water molecules could be made to reorient, depending on the presence or absence of flow.

The observed phenomenon seems to be rather ubiquitous in geology. Particularly because this phenomenon occurs not only for fluorite, but also for silica surfaces – silicates constitute more than half of the minerals in the earth crust. “These new insights on the fundamentals of mineral dissolution force us to reconsider well-established theories in weathering and environmental sciences to take into account changes in surface charge in addition to well-documented surface erosion.”, explains Mischa Bonn.

Contact 

Prof. Dr. Mischa Bonn

Director

Phone:+49 6131 379-161
Email:bonn@...

Homepage 

Publication

 
1
Dan Lis, Ellen H. G. Backus, Johannes Hunger, Sapun H. Parekh, and Mischa Bonn
Science, 6th June 2014; doi: 10.1126/science.1253793 

Prof. Dr. Mischa Bonn | Max Planck Institute for Polymer Research

Further reports about: Polymer Water acid experiments ions phenomenon surfaces

More articles from Process Engineering:

nachricht Elements of successful connections
09.10.2014 | The Agency for Science, Technology and Research (A*STAR)

nachricht New brooms sweep clean – innovative nondestructive testing en route to standardization
09.10.2014 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

Battery Conference April 2015 in Aachen

16.10.2014 | Event News

Experts discuss new developments in the field of stem cell research and cell therapy

10.10.2014 | Event News

Zoonoses: Global collaboration is more important than ever

07.10.2014 | Event News

 
Latest News

Exploring X-Ray phase tomography with synchrotron radiation

21.10.2014 | Medical Engineering

World record in data transmission with smart circuits

21.10.2014 | Information Technology

Scientists restore hearing in noise-deafened mice, pointing way to new therapies

21.10.2014 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>