Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beware the Dim Laser Pointer: Researchers Measure High Infrared Power Levels from Some Green Lasers

05.08.2010
Green laser pointers have become a popular consumer item, delivering light that’s brighter to the eye than red lasers, but stories have circulated on the Web about the potential hazards of inexpensive models.

Now, a team led by physicist Charles Clark at the National Institute of Standards and Technology (NIST) puts some numbers to the problem. In one case, the group found that a green laser pointer emitted almost twice its rated power level of light—but at invisible and potentially dangerous infrared wavelengths rather than green. A new NIST technical note* describes the nature of the problem as well as a home test using an inexpensive webcam that can detect excess infrared light from green lasers.

Late last year, the research team purchased three low-cost green laser pointers advertised to have a power output of 10 milliwatts (mW). Measurements showed that one unit emitted dim green light but delivered infrared levels of nearly 20 mW—powerful enough to cause retinal damage to an individual before he or she is aware of the invisible light. NIST’s Jemellie Galang and her colleagues repeated the tests with several other laser pointers and found similarly intense infrared emissions in some but not all units.

The problem stems from inadequate procedures in manufacturing quality assurance, according to the research team. Inside a green laser pointer, infrared light from a semiconductor diode laser pumps infrared light at a wavelength of 808 nm into a transparent crystal of yttrium orthovanadate doped with neodymium atoms (Nd:YVO4), causing the crystal to lase even deeper in the infrared, at 1064 nm. This light passes through a crystal of potassium titanyl phosphate (KTP), which emits light of half the wavelength: 532 nm, the familiar color of the green laser pointer.

However, if the KTP crystal is misaligned, little of the 1064 nm light is converted into green light, and most of it comes out as infrared. Excess infrared leakage can also occur if the coatings at both ends of the crystal that act as mirrors for the infrared laser light are too thin.

The NIST team says this problem could be solved by incorporating an inexpensive infrared filter at the end of the laser, which could reduce infrared emissions by 100-1000 times depending on quality and cost. Although these filters exist in modern digital cameras and more expensive green laser pointers, they often are left out of the inexpensive models.

The team demonstrates a home test that laser hobbyists could conduct to detect excessive infrared leakage, by using a common digital or cell phone camera, a compact disc, a webcam and a TV remote control. Regardless, they say owners of the devices should never point the lasers at the eyes or aim them at surfaces such as windows, which can reflect infrared light back to the user—a particularly subtle hazard because many modern energy-saving windows have coatings designed specifically to reflect infrared.

The researchers are all members of the Joint Quantum Institute, a collaboration of NIST and the University of Maryland. Co-author Edward W. Hagley is also at Acadia Optronics in Rockville, MD.

* J. Galang, A. Restelli, E.W. Hagley and C.W. Clark, NIST Technical Note (TN 1668), A Green Laser Pointer Hazard (July 2010) Available on-line at www.nist.gov/manuscript-publication-search.cfm?pub_id=906138

Ben Stein | Newswise Science News
Further information:
http://www.nist.gov

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>