Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel zoom objective with deformable mirrors

18.01.2010
Unmanned aerial vehicles UAVs deployed on landscape analysis missions carry optical measuring equipment that is required to operate free of chromatic aberration. Researchers have now designed an all-reflective zoom objective with deformable mirrors.

An small unmanned aerial vehicle (UAV) circles above the ground, capturing the typical green of a coniferous forest or the radiated heat from a town. The objectives in its on-board measuring equipment must function free of chromatic aberration across a wide spectral range – from the ultraviolet region through the visible band and right up to the near and medium infrared range.

In such a scenario, conventional lens systems comprised of several lens elements are of limited use: when required to image a wide spectral range, the image quality drops – the image suffers from color fringing and becomes blurred. Traditionally, specific lenses have been used for each different spectral band. However, the difficulty is that UAVs can only carry a limited amount of weight.

Researchers from the Fraunhofer Institute for Photonic Microsystems IPMS are currently working to make it possible to capture images free from chromatic aberration in a number of spectral ranges using a single system. This would have the advantage of prolonging the battery’s life and increasing the aircraft’s endurance. Group manager Dr. Heinrich Grüger of the IPMS says: “We’ve come up with a design for a new objective in which we’ve used mirrors instead of standard lens elements.” The objective is comprised of four mirrors, carefully arranged to avoid obscuration – this produces a higher-contrast image. Two deformable mirrors take care of the triple zoom range – with no loss of image quality. The new design eliminates the need for elaborate mechanical guides within the lens barrel.

Grüger believes the new objective is potentially highly marketable: “Both the automation technology sector and the automobile and equipment engineering sector would profit from this type of objective.” Suitable deformable mirrors will have to be created – conventional optical mirrors are rigid. Grüger says: “For the zoom function, we need mirrors that will permit flexible actuator control of the radius of curvature.”

Although IPMS scientists have already developed deformable mirrors, they have not yet managed to achieve the size and degree of variability required for the mirror zoom objective. Optical simulations have shown that the mirrors would need to be at least 12 millimeters in diameter in order to produce a zoom objective with a sufficient f-number. Nevertheless, the researchers have already been able to demonstrate the optical performance of the objective: they built three identical setups with three different focal lengths in which the deformable mirrors were replaced by conventional rigid mirrors.

Kristof Seidl | Fraunhofer Gesellschaft
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/en/press/research-news/2010/january/objective-deformable-mirrors.jsp

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>