Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Webcams offer a low-cost way to tune lasers for serious science

04.12.2012
Every photon in a laser beam marches in lockstep, at an identical wavelength that depends on what the laser is used for – for example, infrared lasers that drive the optic fiber internet.

For many applications, lasers need to be precisely tuned to those wavelengths, and the wavelength-measuring instruments can be more expensive than the lasers themselves.

Now, using a handful of inexpensive components – including an off-the-shelf computer webcam and a small diffraction grating, a device for splitting and diffracting light into several beams – researchers have built a diffraction spectrometer that can tune lasers with better than one part-per-million accuracy.

"The accessibility, simplicity, and cost make it feasible to provide such precision measurements for every single laser in a laboratory," says physicist and study co-author Robert E. Scholten of the University of Melbourne. Indeed, Scholten says, the instrument, which is described in the AIP's journal Review of Scientific Advances, is simple enough to be constructed in undergraduate physics labs – "and could easily be a high-school project," he adds. "It would provide excellent training in optics and the wave nature of light, and once constructed, the device can be used to elucidate the quantum mechanical structure of matter, for example by measuring the fine-structure splitting or even the hyperfine structure of atoms such as sodium."

Article: "Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor" is published in Review of Scientific Instruments.

Link: http://rsi.aip.org/resource/1/rsinak/v83/i11/p113104_s1

Authors: James D. White (1), Robert E. Scholten (2)

(1) Juniata College, Huntingdon, Pennsylvania

(2) ARC Centre of Excellence for Coherent X-ray Science, School of Physics, The University of Melbourne, 3010, Australia

Catherine Meyers | EurekAlert!
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

nachricht Climate cycles may explain how running water carved Mars' surface features
02.12.2016 | Penn State

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>