Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Webcams offer a low-cost way to tune lasers for serious science

Every photon in a laser beam marches in lockstep, at an identical wavelength that depends on what the laser is used for – for example, infrared lasers that drive the optic fiber internet.

For many applications, lasers need to be precisely tuned to those wavelengths, and the wavelength-measuring instruments can be more expensive than the lasers themselves.

Now, using a handful of inexpensive components – including an off-the-shelf computer webcam and a small diffraction grating, a device for splitting and diffracting light into several beams – researchers have built a diffraction spectrometer that can tune lasers with better than one part-per-million accuracy.

"The accessibility, simplicity, and cost make it feasible to provide such precision measurements for every single laser in a laboratory," says physicist and study co-author Robert E. Scholten of the University of Melbourne. Indeed, Scholten says, the instrument, which is described in the AIP's journal Review of Scientific Advances, is simple enough to be constructed in undergraduate physics labs – "and could easily be a high-school project," he adds. "It would provide excellent training in optics and the wave nature of light, and once constructed, the device can be used to elucidate the quantum mechanical structure of matter, for example by measuring the fine-structure splitting or even the hyperfine structure of atoms such as sodium."

Article: "Compact diffraction grating laser wavemeter with sub-picometer accuracy and picowatt sensitivity using a webcam imaging sensor" is published in Review of Scientific Instruments.


Authors: James D. White (1), Robert E. Scholten (2)

(1) Juniata College, Huntingdon, Pennsylvania

(2) ARC Centre of Excellence for Coherent X-ray Science, School of Physics, The University of Melbourne, 3010, Australia

Catherine Meyers | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht First results of NSTX-U research operations
26.10.2016 | DOE/Princeton Plasma Physics Laboratory

nachricht Scientists discover particles similar to Majorana fermions
25.10.2016 | Chinese Academy of Sciences Headquarters

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>