Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Voyager 1 spacecraft reaches interstellar space

13.09.2013
University of Iowa-led study confirms historic achievement in space exploration

University of Iowa space physicist Don Gurnett says there is solid evidence that NASA’s Voyager 1 spacecraft has become the first manmade object to reach interstellar space, more than 11 billion miles distant and 36 years after it was launched.


An artist's concept shows the Voyager spacecraft traveling through space against a field of stars. Image courtesy of NASA/JPL-Caltech.

The finding is reported in a paper published in the Sept. 12 online issue of the journal Science.

“On April 9, the Voyager 1 Plasma Wave instrument, built at the UI in the mid-1970s, began detecting locally generated waves, called electron plasma oscillations, at a frequency that corresponds to an electron density about 40 times greater than the density inside the heliosphere—the region of the sun’s influence,” says Gurnett. “The increased electron density is very close to the value scientists expected to find in the interstellar medium.

“This is the first solid evidence that Voyager 1 has crossed the heliopause, the boundary between the heliosphere, and interstellar space,” says Gurnett, principal investigator for the plasma wave instrument.

For several months, the relative position of Voyager 1 has stirred something of a scientific debate because there remains some lingering evidence of the nearby heliosphere beyond the heliopause.

Even though Voyager 1 has passed into interstellar space, it does not mean that its journey is over, says Bill Kurth, UI research scientist and co-author of the Science paper.

“Now that we’re on the outside, we are learning that interstellar space isn’t a bland region,” Kurth says. “Rather, there are variations in some of Voyager’s measurements that may be due to the nearby presence of the heliosphere. So, our attention is turning from crossing the boundary to understanding what is going on outside,” he says.

At age 36, Voyager 1 is the most distant human-made object at more than 11.6 billion miles from the sun, or about 125 astronomical units.

“At that distance it takes more than 17 hours for a radio signal to travel from the spacecraft to one of NASA’s Deep Space Network antennas. The signal strength is so incredibly weak that it takes both a 230-foot and a 110-foot-diameter antenna to receive our highest resolution data,” Gurnett says.

Launched Sept. 5, 1977, Voyager 1 completed flybys of both Jupiter and Saturn and is currently moving outward from the sun at about 3.5 AU per year. A sister spacecraft, Voyager 2 was launched Aug. 20, 1977, on a flight path that took it to encounters with Jupiter, Saturn, Uranus, and Neptune. At present, Voyager 2 is still inside the heliosphere about 103 AU from the sun and traveling outward at about 3.3 AU per year.

The sounds of the electron plasma oscillations heralding Voyager’s entry into interstellar space and other sounds of space can be heard by visiting Gurnett’s website.

Gunett’s and Kurth’s co-authors on the Science paper are L.F. Burlaga of NASA/Goddard Space Flight Center, Greenbelt, Md.; and N.F. Ness of The Catholic University of America, Washington, D.C.

NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., a division of Caltech, manages the Voyager mission for NASA's Science Mission Directorate, Washington, D.C. For more information on Voyager, visit the NASA website.

Contacts

Don Gurnett, Department of Physics and Astronomy, 319-400-3156
Bill Kurth, Department of Physics and Astronomy, 319-335-1926
Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:
http://www.uiowa.edu

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>