Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Voyager 1 spacecraft reaches interstellar space

University of Iowa-led study confirms historic achievement in space exploration

University of Iowa space physicist Don Gurnett says there is solid evidence that NASA’s Voyager 1 spacecraft has become the first manmade object to reach interstellar space, more than 11 billion miles distant and 36 years after it was launched.

An artist's concept shows the Voyager spacecraft traveling through space against a field of stars. Image courtesy of NASA/JPL-Caltech.

The finding is reported in a paper published in the Sept. 12 online issue of the journal Science.

“On April 9, the Voyager 1 Plasma Wave instrument, built at the UI in the mid-1970s, began detecting locally generated waves, called electron plasma oscillations, at a frequency that corresponds to an electron density about 40 times greater than the density inside the heliosphere—the region of the sun’s influence,” says Gurnett. “The increased electron density is very close to the value scientists expected to find in the interstellar medium.

“This is the first solid evidence that Voyager 1 has crossed the heliopause, the boundary between the heliosphere, and interstellar space,” says Gurnett, principal investigator for the plasma wave instrument.

For several months, the relative position of Voyager 1 has stirred something of a scientific debate because there remains some lingering evidence of the nearby heliosphere beyond the heliopause.

Even though Voyager 1 has passed into interstellar space, it does not mean that its journey is over, says Bill Kurth, UI research scientist and co-author of the Science paper.

“Now that we’re on the outside, we are learning that interstellar space isn’t a bland region,” Kurth says. “Rather, there are variations in some of Voyager’s measurements that may be due to the nearby presence of the heliosphere. So, our attention is turning from crossing the boundary to understanding what is going on outside,” he says.

At age 36, Voyager 1 is the most distant human-made object at more than 11.6 billion miles from the sun, or about 125 astronomical units.

“At that distance it takes more than 17 hours for a radio signal to travel from the spacecraft to one of NASA’s Deep Space Network antennas. The signal strength is so incredibly weak that it takes both a 230-foot and a 110-foot-diameter antenna to receive our highest resolution data,” Gurnett says.

Launched Sept. 5, 1977, Voyager 1 completed flybys of both Jupiter and Saturn and is currently moving outward from the sun at about 3.5 AU per year. A sister spacecraft, Voyager 2 was launched Aug. 20, 1977, on a flight path that took it to encounters with Jupiter, Saturn, Uranus, and Neptune. At present, Voyager 2 is still inside the heliosphere about 103 AU from the sun and traveling outward at about 3.3 AU per year.

The sounds of the electron plasma oscillations heralding Voyager’s entry into interstellar space and other sounds of space can be heard by visiting Gurnett’s website.

Gunett’s and Kurth’s co-authors on the Science paper are L.F. Burlaga of NASA/Goddard Space Flight Center, Greenbelt, Md.; and N.F. Ness of The Catholic University of America, Washington, D.C.

NASA’s Jet Propulsion Laboratory (JPL), Pasadena, Calif., a division of Caltech, manages the Voyager mission for NASA's Science Mission Directorate, Washington, D.C. For more information on Voyager, visit the NASA website.


Don Gurnett, Department of Physics and Astronomy, 319-400-3156
Bill Kurth, Department of Physics and Astronomy, 319-335-1926
Gary Galluzzo, University Communication and Marketing, 319-384-0009

Gary Galluzzo | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Light-driven atomic rotations excite magnetic waves
24.10.2016 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>