Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Last visit home for ESA’s comet chaser

21.10.2009
ESA's Rosetta comet chaser will swing by Earth on 13 November to pick up orbital energy and begin the final leg of its 10-year journey to the outer Solar System. Several observations of the Earth–Moon system are planned before the spacecraft heads out to study comet 67/P Churyumov-Gerasimenko.
This will be the third Earth swingby, the last of Rosetta’s four planetary gravity assists. Closest approach to Earth is expected at 08:45 CET. The swingby will provide exactly the boost Rosetta needs to continue into the outer Solar System. The craft is scheduled for a close encounter with asteroid 21 Lutetia in July next year.

Rosetta is expected to arrive at its final destination in May 2014. There, it will release the Philae lander for in-situ studies on the surface. The spacecraft will then escort the comet on its journey toward the Sun, studying it closely for up to two years.
As it closes in on Earth next month, Rosetta will have travelled almost 4500 million km since launch. It will speed past Earth at 13.3 km/s, passing above the Indian Ocean at 109°E, 8°S, just south of the Indonesian island of Java. The gravity-assist will increase the spacecraft's speed by 3.6 km/s with respect to the Sun.

While the swingby is critical for achieving the velocity required to reach its ultimate destination, the close encounter will also be used to study the Earth–Moon system from Rosetta’s unique perspective.
Several instruments that usually hibernate during the long trek will be turned on in the week before the swingby.

Follow the swingby live

The Rosetta Blog will be updated regularly for this final planetary swingby. Follow crucial events live via the blog and the dedicated ESA Rosetta mission website.

Critical swingby events

Closest approach is scheduled for 08:45 CET on 13 November, but mission operators will perform a number of critical actions before and after the swingby to ensure that Rosetta is on the right trajectory.
One of the most important will be a trajectory correction manoeuvre (TCM), scheduled for 22 October at 14:30 CET. Results of this manoeuvre will be analysed to determine whether additional TCMs are required to achieve the correct approach trajectory.

Notes:
All times are in Central European Time (CET/CEST)
TCM: Trajectory correction manoeuvre
DSN: Deep Space Network (NASA)
DSA: Deep Space Antenna (ESA)


Time Event
22 October
14:30 – 21:30 TCM slot
5 November
12:30 – 19:30 Slot for TCM if needed
6 November
Beginning 22:45 Instruments switched on to begin observations of the Earth-Moon system
12 November
10:30 – 17:30 Slot for TCM if needed
13 November
01:00 – 08:00 Slot for TCM if needed
08:45 Earth closest approach
09:04 - 10:55 Swing by confirmation via Maspalomas ground station, Canary Islands
11:00 – 21:00 Start science data download via NASA DSN Goldstone, California
16:41 Moon closest approach
21:13 - 5:04 (14 November) ESTRACK DSA New Norcia ground station pass, Australia
19 November
By 12:05 Instruments turned off

Gerhard Schwehm | EurekAlert!
Further information:
http://www.esa.int
http://www.esa.int/SPECIALS/Rosetta/SEMJNZYRA0G_0.html

More articles from Physics and Astronomy:

nachricht Significantly more productivity in USP lasers
06.12.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Shape matters when light meets atom
05.12.2016 | Centre for Quantum Technologies at the National University of Singapore

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>