Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Last visit home for ESA’s comet chaser

ESA's Rosetta comet chaser will swing by Earth on 13 November to pick up orbital energy and begin the final leg of its 10-year journey to the outer Solar System. Several observations of the Earth–Moon system are planned before the spacecraft heads out to study comet 67/P Churyumov-Gerasimenko.
This will be the third Earth swingby, the last of Rosetta’s four planetary gravity assists. Closest approach to Earth is expected at 08:45 CET. The swingby will provide exactly the boost Rosetta needs to continue into the outer Solar System. The craft is scheduled for a close encounter with asteroid 21 Lutetia in July next year.

Rosetta is expected to arrive at its final destination in May 2014. There, it will release the Philae lander for in-situ studies on the surface. The spacecraft will then escort the comet on its journey toward the Sun, studying it closely for up to two years.
As it closes in on Earth next month, Rosetta will have travelled almost 4500 million km since launch. It will speed past Earth at 13.3 km/s, passing above the Indian Ocean at 109°E, 8°S, just south of the Indonesian island of Java. The gravity-assist will increase the spacecraft's speed by 3.6 km/s with respect to the Sun.

While the swingby is critical for achieving the velocity required to reach its ultimate destination, the close encounter will also be used to study the Earth–Moon system from Rosetta’s unique perspective.
Several instruments that usually hibernate during the long trek will be turned on in the week before the swingby.

Follow the swingby live

The Rosetta Blog will be updated regularly for this final planetary swingby. Follow crucial events live via the blog and the dedicated ESA Rosetta mission website.

Critical swingby events

Closest approach is scheduled for 08:45 CET on 13 November, but mission operators will perform a number of critical actions before and after the swingby to ensure that Rosetta is on the right trajectory.
One of the most important will be a trajectory correction manoeuvre (TCM), scheduled for 22 October at 14:30 CET. Results of this manoeuvre will be analysed to determine whether additional TCMs are required to achieve the correct approach trajectory.

All times are in Central European Time (CET/CEST)
TCM: Trajectory correction manoeuvre
DSN: Deep Space Network (NASA)
DSA: Deep Space Antenna (ESA)

Time Event
22 October
14:30 – 21:30 TCM slot
5 November
12:30 – 19:30 Slot for TCM if needed
6 November
Beginning 22:45 Instruments switched on to begin observations of the Earth-Moon system
12 November
10:30 – 17:30 Slot for TCM if needed
13 November
01:00 – 08:00 Slot for TCM if needed
08:45 Earth closest approach
09:04 - 10:55 Swing by confirmation via Maspalomas ground station, Canary Islands
11:00 – 21:00 Start science data download via NASA DSN Goldstone, California
16:41 Moon closest approach
21:13 - 5:04 (14 November) ESTRACK DSA New Norcia ground station pass, Australia
19 November
By 12:05 Instruments turned off

Gerhard Schwehm | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1
21.03.2018 | Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR

nachricht Taming chaos: Calculating probability in complex systems
21.03.2018 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Modular safety concept increases flexibility in plant conversion

22.03.2018 | Trade Fair News

New interactive map shows climate change everywhere in world

22.03.2018 | Earth Sciences

New technologies and computing power to help strengthen population data

22.03.2018 | Earth Sciences

Science & Research
Overview of more VideoLinks >>>