Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Violent gamma-ray outbursts near supermassive black holes

22.05.2014

Where in powerful jets of distant active galaxies are outbursts of high energy gamma-ray emission produced?

A team led by Lars Fuhrmann from MPIfR Bonn, performed intensive, multi-frequency radio observations with some of the best single-dish radio telescopes in combination with NASA's Fermi Telescope, to study the place where the high energy outbursts occur.


An artist's view of the nuclear region of an active galaxy with a disk of accreting material (brown/yellow) and a powerful, collimated radio jet perpendicular t o the disk.

Credit: NASA JPL/CalTech


Telescopes utilized for the data acquisition in the radio and y-ray regime. Clockwise from upper left: Effelsberg 100m, APEX 12m, Fermi -ray observatory and IRAM 30m.

Credit: MPIfR/N. Junkes (100m), APEX-Team (12m), NASA E/PO, Sonoma State University, Aurore Simonnet (Fermi), MPIfR (30m).

For the first time a connection between outbursts of high energy gamma-ray emission and their counterparts at many radio frequencies has been established for a large sample of galaxies. Measuring delays in time between these events finally produced better constraints on the exact location where the gamma-ray outbursts take place.

Special types of distant active galaxies and their innermost central regions show extreme physical processes. In the vicinity of a spinning supermassive black hole (billions of times heavier than our Sun) an enormous amount of energy is released, often in the most energetic form of light: high energy gamma-ray photons at mega- or even gigaelectronvolt (MeV/GeV) energies. This energy output is produced by feeding the black hole from surrounding stars, gas and dust.

Matter is spiraling in onto the black hole and strong magnetic fields channel some of the infalling gas into two powerful, well collimated "jets" of plasma accelerating away from the center with velocities approaching the speed of light. Many of the connected physical processes are not understood in detail so far, for example the production of high-energy gamma-ray photons and their place of origin inside the jet, or the origin of strong outbursts of emission across the whole electromagnetic spectrum. New instruments and observing programs covering a large fraction of the whole energy spectrum nearly simultaneously allow new insights into the extreme physics of these objects to be obtained.

Using a combination of three of the world’s most advanced single-dish radio observatories, namely the Effelsberg 100-m, IRAM 30-m and APEX 12-m telescopes covering quasi-simultaneously 11 radio frequency bands (the so-called Fermi-GST AGN Multi-frequency Monitoring Alliance, F-GAMMA programme), the team of scientists was able to monitor the frequently occurring radio outbursts of about 60 powerful active galaxies over many years.

"Since the era of the EGRET instrument on the Compton Gamma-ray Observatory in the 1990s, it has been discussed whether outbursts of radio emission are physically connected to similar events occurring at gamma rays" says Anton Zensus, Director at the Max Planck Institute for Radio Astronomy (MPIfR) and Fermi Affiliated Scientist. "Now with the combination of F-GAMMA radio and Fermi gamma-ray long-term data, and thanks to special analysis techniques, we finally know it!"

In addition to radio data within the F-GAMMA programme, the research team used gamma-ray observations of NASA’s Fermi Gamma-ray Space Telescope (launched in 2008), and a new statistical method to add up many radio and gamma-ray events. "It was illuminating to see the statistical noise going down and the average correlation popping up" explains Stefan Larsson, from Stockholm University.

"This finally demonstrates that a significant connection exists, even when using different radio frequencies" he continues. The study furthermore shows that the radio outbursts arrived at the telescopes later in time than their gamma-ray counterparts, with mean delays between 10 and 80 days. "For the first time we see that the radio delays become smoothly smaller towards higher radio frequencies", adds Emmanouil Angelakis from MPIfR. "Towards higher frequencies we are looking deeper into the jet. The gamma-ray photons are thus coming from the innermost radio emitting jet regions."

Using the measured time delays the team was finally able to estimate distances of a few ten light years or less between the radio and gamma-ray outburst regions. "Based on our delay measurements we could estimate for one of the brightest gamma-ray emitting active galaxies in the sky, 3C 454.3, how far away from the supermassive black hole most of the gamma-ray photons must have been produced. We are talking about only a few light year distances – very close to the footpoint of the jet and the black hole itself!" proudly reports Lars Fuhrmann from MPIfR, the lead author of the paper. "This has serious implications for the physical processes producing the gamma-ray photons!" he adds. In the meantime the team is continuing to use the "Joint Eye" on the universe to collect more data and more events for detailed follow-up studies.

Original paper:

Detection of significant cm to sub-mm band radio and γ-ray correlated variability in Fermi bright blazars, L. Fuhrmann, S. Larsson, J. Chiang, E. Angelakis, J. A. Zensus, I. Nestoras, T. P. Krichbaum, H. Ungerechts, A. Sievers, V. Pavlidou, A. C. S. Readhead, W. Max-Moerbeck, and T. J. Pearson, 2014, MNRAS, 441, 1899-1909.
http://mnras.oxfordjournals.org/content/441/3/1899.abstract
http://arxiv.org/abs/1403.4170

Contact:

Dr. Lars Fuhrmann,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-424
E-mail: lfuhrmann@mpifr-bonn.mpg.de

Prof. Dr. J. Anton Zensus,
Director and Head of Research Group „Radio Astronomy / VLBI“
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-298
E-mail: azensus@mpifr-bonn.mpg.de

Dr. Emmanouil Angelakis,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-217
E-mail: eangelakis@mpifr-bonn.mpg.de

Dr. Norbert Junkes,
Press and Public Outreach,
Max-Planck-Institut für Radioastronomie.
Fon: +49(0)228-525-399
E-mail: njunkes@mpifr-bonn.mpg.de

Weitere Informationen:

http://www.mpifr-bonn.mpg.de/pressreleases/2014/5

Norbert Junkes | Max-Planck-Institut

More articles from Physics and Astronomy:

nachricht From rocks in Colorado, evidence of a 'chaotic solar system'
23.02.2017 | University of Wisconsin-Madison

nachricht Prediction: More gas-giants will be found orbiting Sun-like stars
22.02.2017 | Carnegie Institution for Science

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>