Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Very distant galaxy cluster confirmed

22.05.2014

The structures and star populations of massive galaxies appear to change as they age, but much about how these galaxies formed and evolved remains mysterious.

Many of the oldest and most massive galaxies reside in clusters, enormous structures where numerous galaxies are found concentrated together. Galaxy clusters in the early universe are thought to be key to understanding the lifecycles of old galaxies, but to date astronomers have located only a handful of these rare, distant structures.

New research from a team led by Carnegie's Andrew Newman has confirmed the presence of an unusually distant galaxy cluster, JKCS 041. It is published by the Astrophysical Journal.

"Our observations make this galaxy cluster one of the best-studied structures from the early universe," Newman said.

Although the team began studying JKCS 041 in 2006, it has taken years of observing with many of the world's most powerful telescopes to finally confirm its distance.

The team used the Hubble Space Telescope to capture sharp images of the distant cluster and split the starlight from the galaxies into its constituent colors, a technique known as spectroscopy. They found 19 galaxies at precisely the same great distance of 9.9 billion light years, the tell-tale sign of an early galaxy cluster.

A previous study using the Chandra X-ray Observatory discovered X-ray emissions in the location of JKCS 041.

"These X-rays likely originate from hot gas in JKCS 041, which has been heated to a temperature of about 80 million degrees by the gravity of the massive cluster," said team member Stefano Andreon of the Osservatorio Astronomico di Brera, who led a companion paper published by Astronomy & Astrophysics, which is available here.

Today the largest and oldest galaxies are found in clusters, but there is a mystery about when and why these giant galaxies stopped forming new stars and became dormant, or quiescent. Peering back to a time when the galaxies in JKCS 041 were only 1 billion years old---or 10 percent of their present age---the team found that most had already entered their quiescent phase.

"Because JKCS 041 is the most-distant known cluster of its size, it gives us a unique opportunity to study these old galaxies in detail and better understand their origins," Newman said.

Once massive galaxies enter their quiescent phase, they continue expanding in overall size. This is thought to occur as galaxies collide with one another and evolve into a new, larger galaxy. Early clusters are suspected to be prime locations for these collisions, but to the team's surprise they found that the galaxies in JKCS 041 were growing at nearly the same rate as non-cluster galaxies.

###

The international team included Newman, Andreon, Ginevra Trinchieri of the Osservatorio Astronomico di Brera, Richard Ellis of Caltech, Tommaso Treu of the University of California at Santa Barbara, and Anand Raichoor of the Observatorie di Paris.

This work was based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program number GO-12927, which was supported under NASA contract NAS 5-26555. The work was also supported by the agreement ASI-INAF I/009/10/0 and the Osservatorio Astronomico di Brera.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Drew Newman | Eurek Alert!
Further information:
http://carnegiescience.edu/

Further reports about: Astronomy Hubble NASA Space Telescope X-ray clusters ecology galaxies observations starlight structures temperature

More articles from Physics and Astronomy:

nachricht Absorbing acoustics with soundless spirals
10.02.2016 | American Institute of Physics

nachricht Hot Science of the Cold Universe
10.02.2016 | Max-Planck-Institut für Radioastronomie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>