Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Upside-down planet’ reveals new method for studying binary star systems

22.04.2014

What looked at first like a sort of upside-down planet has instead revealed a new method for studying binary star systems, discovered by a University of Washington student astronomer.

Working with UW astronomer Eric Agol, doctoral student Ethan Kruse has confirmed the first “self-lensing” binary star system — one in which the mass of the closer star can be measured by how powerfully it magnifies light from its more distant companion star. Though our sun stands alone, about 40 percent of similar stars are in binary (two-star) or multi-star systems, orbiting their companions in a gravitational dance.


An image of the Sun used to simulate what the sun-like star in a self-lensing binary star system might look like.

Kruse’s discovery confirms an astronomer’s prediction in 1973, based on stellar evolution models of the time, that such a system should be possible. A paperby Kruse and Agol was published in the April 18 edition of Science.

Like so many interesting discoveries, this one happened largely by accident.

... more about:
»Hubble »Institute »Kepler »Mercury »NASA »Space »Technology »Telescope »glass »method

Astronomers detect planets too far away for direct observation by the dimming in light when a world passes in front of, or transits, its host star. Kruse was looking for transits others might have missed in data from the planet-hunting Kepler Space Telescope when he saw something in the binary star system KOI-3278 that didn’t make sense.

“I found what essentially looked like an upside-down planet,” Kruse said. “What you normally expect is this dip in brightness, but what you see in this system is basically the exact opposite — it looks like an anti-transit.”

The two stars of KOI-3278, about 2,600 light-years (a light-year is 5.88 trillion miles) away in the Lyra constellation, take turns being nearer to Earth as they orbit each other every 88.18 days. They are about 43 million miles apart, roughly the distance the planet Mercury is from the sun. The white dwarf, a cooling star thought to be in the final stage of life, is about Earth’s size but 200,000 times more massive.

That increase in light, rather than the dip Kruse thought he’d see, was the white dwarf bending and magnifying light from its more distant neighbor through gravitational lensing, like a magnifying glass.

“The basic idea is fairly simple,” Agol said. “Gravity warps space and time and as light travels toward us it actually gets bent, changes direction. So, any gravitational object — anything with mass — acts as a magnifying glass,” though a weak one. “You really need large distances for it to be effective.”

“The cool thing, in this case, is that the lensing effect is so strong, we are able to use that to measure the mass of the closer, white dwarf star. And instead of getting a dip now you get a brightening through the gravitational magnification.”

This finding improves on research in 2013 by the California Institute of Technology, which detected a similar self-lensing effect minus the brightening of the light because the two stars being studied were much closer together.

“The effect in this system is much stronger,” said Agol. “The larger the distance, the more the effect.”

Gravitational lensing is a common tool in astronomy. It has been used to detect planets around distant stars within the Milky Way galaxy, and was among the first methods used to confirm Albert Einstein’s general theory of relativity. Lensing within the Milky Way galaxy, such as this, is called microlensing.

But until now, the process had only been used in the fleeting instances of a nearby and distant star, not otherwise associated in any way, aligning just right, before going their separate ways again.

“The chance is really improbable,” said Agol. “As those two stars go through the galaxy they’ll never come back again, so you see that microlensing effect once and it never repeats. In this case, though, because the stars are orbiting each other, it repeats every 88 days.”

White dwarfs are important to astronomy, and are used as indicators of age in the galaxy, the astronomers said. Basically embers of burned-out stars, white dwarfs cool off at a specific rate over time. With this lensing, astronomers can learn with much greater precision what its mass and temperature are, and follow-up observations may yield its size.

By expanding their understanding of white dwarfs, astronomers take a step closer to learning about the age of the galaxy.

“This is a very significant achievement for a graduate student,” Agol said.

The two have sought time to use the Hubble Space Telescope to study KOI-3278 in more detail, and to see if there are other such star systems waiting to be discovered in the Kepler data.

“If everyone’s missed this one, then there could be many more that everyone’s missed as well,” said Kruse.

###

The research was funded by grants from the National Science Foundation (#AST 0645416) and NASA (#12-OSS12-0011). For more information, contact Agol at 206-543-7106 or agol@astro.washington.edu; or Kruse at 845-499-1384 or eakruse@uw.edu.

Peter Kelley | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/04/21/upside-down-planet-reveals-new-method-for-studying-binary-star-systems/

Further reports about: Hubble Institute Kepler Mercury NASA Space Technology Telescope glass method

More articles from Physics and Astronomy:

nachricht Distant planet's interior chemistry may differ from our own
01.09.2015 | Carnegie Institution

nachricht Interstellar seeds could create oases of life
28.08.2015 | Harvard-Smithsonian Center for Astrophysics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

First global antineutrino emission map highlights Earth's energy budget

01.09.2015 | Earth Sciences

Distant planet's interior chemistry may differ from our own

01.09.2015 | Physics and Astronomy

Magnetic fields provide a new way to communicate wirelessly

01.09.2015 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>