Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upping the anti

06.06.2011
Canadian researchers instrumental in game-changing antimatter study

Science fiction is fast approaching science fact as researchers are progressing rapidly toward "bottling" antimatter.

In a paper published online today by the journal Nature Physics, the ALPHA experiment at CERN, including key Canadian contributors, reports that it has succeeded in storing antimatter atoms for over 16 minutes. While carrying around bottled antimatter like in the movie Angels and Demons remains fundamentally far-fetched, storing antimatter for long periods of time opens up new vistas for scientists struggling to understand this elusive substance.

ALPHA managed to store twice the antihydrogen (the antimatter partner to normal hydrogen) 5,000 times longer than the previous best, setting the stage, for example, to test whether antihydrogen and normal hydrogen fall the same way due to gravity.

Lead author Makoto Fujiwara, TRIUMF research scientist, University of Calgary adjunct professor, and spokesperson of the Canadian part of the ALPHA team said, "We know we have confined antihydrogen atoms for at least for 1,000 seconds. That's almost as long as one period in hockey! This is potentially a game changer in antimatter research."

Antimatter remains one of the biggest mysteries of science. At the Big Bang, matter and antimatter should have been produced equally, but since they destroy each other upon contact, eventually nothing should have remained but pure energy (light). However, all observations suggest that only the antimatter has vanished. To figure out what happened to "the lost half of the universe," scientists are eager to determine if, as predicted, the laws of physics are the same for both matter and antimatter. ALPHA uses an analogue of a very well-known system in physics, the hydrogen atom (one electron orbiting one proton), and testing whether its antimatter twin, antihydrogen (an antielectron orbiting an antiproton), behaves the same. But to study something one must hold onto it long enough.

Fujiwara asks, "Does antimatter shine in the same colour as matter? Does it experience the gravity in the same way as matter?" These are still very difficult experiments, and they will take long and hard work, but this new result is a very important step. Now experiments will be about 10,000 times less difficult than before!" Explained ALPHA spokesperson Jeffrey Hangst of Aarhus University, "This would provide the first-ever look inside the structure of antihydrogen - element 1 on the anti-periodic table."

Antihydrogen atoms were first made in large quantities at CERN eight years ago, but can't be stored conventionally since antiatoms touching the ordinary-matter walls of a bottle would instantly annihilate. The ALPHA collaboration succeeded by developing a sophisticated "magnetic bottle" using a state-of-the-art superconducting magnet to suspend the antiatoms away from the walls, last year demonstrating definitive proof of antihydrogen atom capture for about a tenth of a second, likely the first contained antiatoms in the history of the universe.

Canadian scientists have been playing leading roles in the antihydrogen detection and data analysis aspects of the project. The next step for ALPHA is to start performing measurements on bottled antihydrogen, and this is due to get underway later this year. The first step is to illuminate the trapped anti-atoms with microwaves to determine if they absorb exactly the same frequencies (or energies) as their matter twins.

"I've always liked hydrogen atoms," said Walter Hardy of the University of British Columbia a leading expert in atomic hydrogen studies. "It's ironic that we are now trying to measure the same properties of antihydrogen that I measured many years ago on regular hydrogen. It is a crucial comparison, though, and will tell us if we truly understand the relationship between matter and antimatter. "

Support for ALPHA-Canada and its research came from NSERC (National Science and Engineering Research Council, TRIUMF, AIF (Alberta Ingenuity Fund), the Killam Trust, and FQRNT (Le Fonds québécois de la recherche sur la nature et les technologies).

About TRIUMF: TRIUMF is Canada's national laboratory for particle and nuclear physics. Located on the south campus of the University of British Columbia, TRIUMF is owned and operated as a joint venture by a consortium of the following Canadian universities, via a contribution through the National Research Council Canada and building capital funds from the Government of British Columbia: University of Alberta, University of British Columbia, University of Calgary, Carleton University, University of Guelph, University of Manitoba, McMaster University, Université de Montréal, University of Northern British Columbia, Queen's University, University of Regina, Saint Mary's University, Simon Fraser University, University of Toronto, University of Victoria, University of Winnipeg, York University. See http://www.triumf.ca.

About ALPHA-Canada: ALPHA is a collaboration of about 40 physicists from 15 institutions from Canada, Brazil, Denmark, Israel, Japan, Sweden, UK, and the USA. ALPHA-Canada currently consists of 8 senior scientists, 5 graduate students, and several professional staff from 5 Canadian institutions. ALPHA-Canada constitute about one third of the entire ALPHA collaboration. 14 out of 40 ALPHA co-authors in the reported work are with ALPHA-Canada: Andrea Gutierrez, Sarah Seif El Nasr, Walter Hardy (Univ. of British Columbia), Tim Friesen, Richard Hydomako, Robert Thompson (Univ. of Calgary), Mohammad Ashkezari, Michael Hayden (Simon Fraser Univ.), Scott Menary (York Univ.), Makoto Fujiwara, David Gill, Leonid Kurchaninov, Konstantin Olchanski, Art Olin, James Storey (TRIUMF). See http://alpha.web.cern.ch/alpha & http://angelsanddemons.cern.ch.

Makoto Fujiwara | EurekAlert!
Further information:
http://www.triumf.ca

Further reports about: ALPHA-Canada Alpha Big Bang CERN Canadian Light Source Fujiwara Science TV TRIUMF hydrogen atom

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>