Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upping the anti

06.06.2011
Canadian researchers instrumental in game-changing antimatter study

Science fiction is fast approaching science fact as researchers are progressing rapidly toward "bottling" antimatter.

In a paper published online today by the journal Nature Physics, the ALPHA experiment at CERN, including key Canadian contributors, reports that it has succeeded in storing antimatter atoms for over 16 minutes. While carrying around bottled antimatter like in the movie Angels and Demons remains fundamentally far-fetched, storing antimatter for long periods of time opens up new vistas for scientists struggling to understand this elusive substance.

ALPHA managed to store twice the antihydrogen (the antimatter partner to normal hydrogen) 5,000 times longer than the previous best, setting the stage, for example, to test whether antihydrogen and normal hydrogen fall the same way due to gravity.

Lead author Makoto Fujiwara, TRIUMF research scientist, University of Calgary adjunct professor, and spokesperson of the Canadian part of the ALPHA team said, "We know we have confined antihydrogen atoms for at least for 1,000 seconds. That's almost as long as one period in hockey! This is potentially a game changer in antimatter research."

Antimatter remains one of the biggest mysteries of science. At the Big Bang, matter and antimatter should have been produced equally, but since they destroy each other upon contact, eventually nothing should have remained but pure energy (light). However, all observations suggest that only the antimatter has vanished. To figure out what happened to "the lost half of the universe," scientists are eager to determine if, as predicted, the laws of physics are the same for both matter and antimatter. ALPHA uses an analogue of a very well-known system in physics, the hydrogen atom (one electron orbiting one proton), and testing whether its antimatter twin, antihydrogen (an antielectron orbiting an antiproton), behaves the same. But to study something one must hold onto it long enough.

Fujiwara asks, "Does antimatter shine in the same colour as matter? Does it experience the gravity in the same way as matter?" These are still very difficult experiments, and they will take long and hard work, but this new result is a very important step. Now experiments will be about 10,000 times less difficult than before!" Explained ALPHA spokesperson Jeffrey Hangst of Aarhus University, "This would provide the first-ever look inside the structure of antihydrogen - element 1 on the anti-periodic table."

Antihydrogen atoms were first made in large quantities at CERN eight years ago, but can't be stored conventionally since antiatoms touching the ordinary-matter walls of a bottle would instantly annihilate. The ALPHA collaboration succeeded by developing a sophisticated "magnetic bottle" using a state-of-the-art superconducting magnet to suspend the antiatoms away from the walls, last year demonstrating definitive proof of antihydrogen atom capture for about a tenth of a second, likely the first contained antiatoms in the history of the universe.

Canadian scientists have been playing leading roles in the antihydrogen detection and data analysis aspects of the project. The next step for ALPHA is to start performing measurements on bottled antihydrogen, and this is due to get underway later this year. The first step is to illuminate the trapped anti-atoms with microwaves to determine if they absorb exactly the same frequencies (or energies) as their matter twins.

"I've always liked hydrogen atoms," said Walter Hardy of the University of British Columbia a leading expert in atomic hydrogen studies. "It's ironic that we are now trying to measure the same properties of antihydrogen that I measured many years ago on regular hydrogen. It is a crucial comparison, though, and will tell us if we truly understand the relationship between matter and antimatter. "

Support for ALPHA-Canada and its research came from NSERC (National Science and Engineering Research Council, TRIUMF, AIF (Alberta Ingenuity Fund), the Killam Trust, and FQRNT (Le Fonds québécois de la recherche sur la nature et les technologies).

About TRIUMF: TRIUMF is Canada's national laboratory for particle and nuclear physics. Located on the south campus of the University of British Columbia, TRIUMF is owned and operated as a joint venture by a consortium of the following Canadian universities, via a contribution through the National Research Council Canada and building capital funds from the Government of British Columbia: University of Alberta, University of British Columbia, University of Calgary, Carleton University, University of Guelph, University of Manitoba, McMaster University, Université de Montréal, University of Northern British Columbia, Queen's University, University of Regina, Saint Mary's University, Simon Fraser University, University of Toronto, University of Victoria, University of Winnipeg, York University. See http://www.triumf.ca.

About ALPHA-Canada: ALPHA is a collaboration of about 40 physicists from 15 institutions from Canada, Brazil, Denmark, Israel, Japan, Sweden, UK, and the USA. ALPHA-Canada currently consists of 8 senior scientists, 5 graduate students, and several professional staff from 5 Canadian institutions. ALPHA-Canada constitute about one third of the entire ALPHA collaboration. 14 out of 40 ALPHA co-authors in the reported work are with ALPHA-Canada: Andrea Gutierrez, Sarah Seif El Nasr, Walter Hardy (Univ. of British Columbia), Tim Friesen, Richard Hydomako, Robert Thompson (Univ. of Calgary), Mohammad Ashkezari, Michael Hayden (Simon Fraser Univ.), Scott Menary (York Univ.), Makoto Fujiwara, David Gill, Leonid Kurchaninov, Konstantin Olchanski, Art Olin, James Storey (TRIUMF). See http://alpha.web.cern.ch/alpha & http://angelsanddemons.cern.ch.

Makoto Fujiwara | EurekAlert!
Further information:
http://www.triumf.ca

Further reports about: ALPHA-Canada Alpha Big Bang CERN Canadian Light Source Fujiwara Science TV TRIUMF hydrogen atom

More articles from Physics and Astronomy:

nachricht Engineering team images tiny quasicrystals as they form
18.08.2017 | Cornell University

nachricht Astrophysicists explain the mysterious behavior of cosmic rays
18.08.2017 | Moscow Institute of Physics and Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>