Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unlocking the secret of the Kondo Effect

22.09.2008
A team of scientists including researchers from the London Centre for Nanotechnology at UCL (University College London) and the IBM Almaden Research Center has forged a breakthrough in understanding an intriguing phenomenon in fundamental physics: the Kondo effect.

The findings are reported online today in the scientific journal Nature Physics.

The Kondo effect, one of the few examples in physics where many particles collectively behave as one object (a single quantum-mechanical body), has intrigued scientists around the world for decades.

When a single magnetic atom is located inside a metal, the free electrons of the metal ‘screen’ the atom. That way, a cloud of many electrons around the atom becomes magnetized. Sometimes, if the metal is cooled down to very low temperatures, the atomic spin enters a so-called ‘quantum superposition’ state. In this state its north-pole points in two opposite directions at the same time. As a result, the entire electron cloud around the spin will also be simultaneously magnetized in two directions.

Now, using a technique that was developed by the same team in 2007, the researchers have shown that it is possible to predict when the Kondo effect will occur – and to understand why. The key turns out to be in the geometry of a magnetic atom’s immediate surroundings. By carefully studying how this geometry influences the magnetic moment (or “spin”) of the atom, the emergence of the Kondo effect can now be predicted and understood.

Dr. Cyrus Hirjibehedin, a member of the IBM team who is now a Lecturer at UCL (University College London) and a part of the academic staff of the LCN, said: “This result represents a major advance in our understanding of this fundamental physical phenomenon and could have important consequences for future nanoscale magnetic devices.”

Jenny Gimpel | alfa
Further information:
http://www.ucl.ac.uk/
http://www.ucl.ac.uk/media/library/kondo

More articles from Physics and Astronomy:

nachricht New quantum liquid crystals may play role in future of computers
21.04.2017 | California Institute of Technology

nachricht Light rays from a supernova bent by the curvature of space-time around a galaxy
21.04.2017 | Stockholm University

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>