Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Minnesota leads team in discovery of novel type of magnetic wave

11.11.2010
Findings could improve wiring in national electrical grid systems

A team of international researchers led by physicists in the University of Minnesota's College of Science and Engineering have made a significant breakthrough in an effort to understand the phenomenon of high-temperature superconductivity in complex copper-oxides—one of the most studied scientific topics in history.

The University of Minnesota researchers and their international colleagues from Germany, France and China report the discovery of a novel type of magnetic wave involving oxygen atoms. The new findings could have implications for improving superconducting electric wires used in national electrical grids.

The study by lead author Martin Greven, an associate professor in the university's School of Physics and Astronomy, is published in the Nov. 11 issue of Nature together with a "News and Views" introduction. The research is also scheduled to be highlighted in the journal Science.

"Following the Nobel-Prize winning discovery of high-temperature superconductivity in complex copper-oxide materials in the mid 1980s, the effort to understand this phenomenon has been one of the major scientific challenges in the field of physics for the past quarter century, with more than 100,000 publications on the topic," Greven said.

"While the commercialization of these complex copper-oxide materials, in the form of superior electric wires, has recently begun, physicists have not yet been able to solve the mystery of why these exotic materials are superconducting in the first place. The materials' unusual magnetism is often argued to be responsible for their superconductivity," Greven added.

In their experiments, the researchers bombarded the copper-oxide crystals with intense beams of neutrons. The neutrons themselves are magnetic, and by carefully measuring how these particles are scattered from the crystals, the research team was able to show the existence of unusual magnetic waves involving oxygen atoms.

"We believe that our discovery sheds new light on this hotly debated subject of superconductivity," Greven said.

Other members of the research team include two of Greven's former Ph.D. students, Guichuan Yu, University of Minnesota, School of Physics and Astronomy, and Yuan Li, now at the Max Planck Institute, Stuttgart, Germany; V. Balédent , Y. Sidis and P. Bourges, Laboratoire Léon Brillouin, Gif sur Yvette, France; N. Bariši, Physikalisches Institut, Universitat Stuttgart, Stuttgart, Germany; K. Hradil, Institut fur Physikalisches Chemie, Universitat Göttingen, Göttingen, Germany; R.A. Mole, Forschungsneutronenquelle Heinz Maier-Leibnitz, Garching, Germany; P. Steffens, Institut Laue Langevin, France; and X. Zhao State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.

More information on the research can be found on the Nature website at: http://www.nature.com/nature/journal/v468/n7321/full/nature09477.html

Rhonda Zurn | EurekAlert!
Further information:
http://www.umn.edu
http://www.nature.com/nature/journal/v468/n7321/full/nature09477.html

More articles from Physics and Astronomy:

nachricht Physicists discover that lithium oxide on tokamak walls can improve plasma performance
22.05.2017 | DOE/Princeton Plasma Physics Laboratory

nachricht Experts explain origins of topographic relief on Earth, Mars and Titan
22.05.2017 | City College of New York

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>