Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Minnesota leads team in discovery of novel type of magnetic wave

Findings could improve wiring in national electrical grid systems

A team of international researchers led by physicists in the University of Minnesota's College of Science and Engineering have made a significant breakthrough in an effort to understand the phenomenon of high-temperature superconductivity in complex copper-oxides—one of the most studied scientific topics in history.

The University of Minnesota researchers and their international colleagues from Germany, France and China report the discovery of a novel type of magnetic wave involving oxygen atoms. The new findings could have implications for improving superconducting electric wires used in national electrical grids.

The study by lead author Martin Greven, an associate professor in the university's School of Physics and Astronomy, is published in the Nov. 11 issue of Nature together with a "News and Views" introduction. The research is also scheduled to be highlighted in the journal Science.

"Following the Nobel-Prize winning discovery of high-temperature superconductivity in complex copper-oxide materials in the mid 1980s, the effort to understand this phenomenon has been one of the major scientific challenges in the field of physics for the past quarter century, with more than 100,000 publications on the topic," Greven said.

"While the commercialization of these complex copper-oxide materials, in the form of superior electric wires, has recently begun, physicists have not yet been able to solve the mystery of why these exotic materials are superconducting in the first place. The materials' unusual magnetism is often argued to be responsible for their superconductivity," Greven added.

In their experiments, the researchers bombarded the copper-oxide crystals with intense beams of neutrons. The neutrons themselves are magnetic, and by carefully measuring how these particles are scattered from the crystals, the research team was able to show the existence of unusual magnetic waves involving oxygen atoms.

"We believe that our discovery sheds new light on this hotly debated subject of superconductivity," Greven said.

Other members of the research team include two of Greven's former Ph.D. students, Guichuan Yu, University of Minnesota, School of Physics and Astronomy, and Yuan Li, now at the Max Planck Institute, Stuttgart, Germany; V. Balédent , Y. Sidis and P. Bourges, Laboratoire Léon Brillouin, Gif sur Yvette, France; N. Bariši, Physikalisches Institut, Universitat Stuttgart, Stuttgart, Germany; K. Hradil, Institut fur Physikalisches Chemie, Universitat Göttingen, Göttingen, Germany; R.A. Mole, Forschungsneutronenquelle Heinz Maier-Leibnitz, Garching, Germany; P. Steffens, Institut Laue Langevin, France; and X. Zhao State Key Lab of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China.

More information on the research can be found on the Nature website at:

Rhonda Zurn | EurekAlert!
Further information:

More articles from Physics and Astronomy:

nachricht Move over, lasers: Scientists can now create holograms from neutrons, too
21.10.2016 | National Institute of Standards and Technology (NIST)

nachricht Finding the lightest superdeformed triaxial atomic nucleus
20.10.2016 | The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>