Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Universe likes to form galaxies similar to the Milky Way

11.10.2010
Galaxies like our own Milky Way formed easily and have also been the largest spiral galaxies in the universe for almost 4 billion years. This is shown in a new study by associate professor Kambiz Fathi of the Department of Astronomy at Stockholm University. The study is now published in the prestigious scientific journal The Astrophysical Journal Letters.

Astronomers believe that galaxies are formed by a complex interplay between the processes that affect not only the stars and gas but also to supermassive black holes and possibly also the mysterious dark matter that surrounds every galaxy and whose nature remains unexplained.

– Galaxy formation history may be telling us something about the places in the universe where life can form, says Kambiz Fathi. Large galaxies like the Milky Way swim in a sea of many smaller galaxies, and in this process assimilate the small galaxies, sort of in the same fashion as “mergers and acquisitions” in the financial world.

– The new results show that spiral galaxies, such as the Milky Way, appears to have worked in the same way, easily formed, and have been the largest spiral galaxies in the universe for at least the last 3.4 billion years, says Kambiz Fathi.

Since the 1970s, astronomers have noticed that the number of stars in these unremarkable, middle regions of spiral galaxies is never much larger than in the Milky Way. This upper limit is known as Freeman's Law, named after the Australian astronomer Ken Freeman, who first described it. Astronomers have previously checked Freeman's Law for a few tens of galaxies. Kambiz Fathi has made a far more comprehensive investigation and found that this applies more widely than previously thought.

To come to this conclusion, Kambiz Fathi measured the images of 30 000 galaxies using the resources from the European Virtual Observatory, which gives astronomers the opportunity to use the power of the internet and large databases to reuse and combine observations from many different telescopes in innovative ways.

Since the speed of light is finite, we see distant galaxies as they were when the universe is younger than it is now. This effect allows astronomers to investigate how the universe and its galaxies have changed just by looking at objects at very large distances.

For each of the 30 000 galaxies, Kambiz Fathi estimated the number of stars in the parts of the galaxies where spiral arms are prominent. Our own sun occupies just such a place in the Milky Way.

Further information
Associate Professor Kambiz Fathi, Department of Astronomy, Stockholm University
Mobile: +46 704 76 47 73
Tel +56 55 44 82 99 (goes to the APEX-observatory in Chile where Kambiz Fathi is working at present, please try this number if no answer on mobile.)

E-mail: kambiz@astro.su.se

Pressofficer Eva Albrektson; eva.albrektson@kommunikation.su.se; +46 702 308891

Eva Albrektson | idw
Further information:
http://iopscience.iop.org/2041-8205/722/1/L120
http://arxiv.org/pdf/1009.2692

More articles from Physics and Astronomy:

nachricht First Juno science results supported by University of Leicester's Jupiter 'forecast'
26.05.2017 | University of Leicester

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>