Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultrashort Laser Ablation Enables Novel Metal Films

22.09.2010
Laser ablation is well known in medical applications like dermatology and dentistry, and for more than a decade it has been used to vaporize materials that are difficult to evaporate for high-tech applications like deposition of superconductors. Now researchers in the Journal of Applied Physics, which is published by the American Institute of Physics have studied the properties of femtosecond laser ablation plumes to better understand how to apply them to specialized films.

Salvatore Amoruso at University of Naples, Italy and colleagues examined the expansion dynamics of various ultrashort laser ablation plumes and the basic properties of the complicated ablation process in which some material is vaporized in the form of plasma and some in the form of nanoparticles. The team studied the shapes of both the plasma and nanoparticle plumes, which are important for pulsed laser deposition of nanoparticle films.

Nanoparticle silver and gold films made by pulsed laser deposition are useful for optical applications such as surface-enhanced Raman spectroscopy. Nanoparticle films of transition metals such as iron, nickel, or cobalt may be used to catalyse the growth of carbon nanotubes.

"We can understand our results in terms of some existing models of plume expansion," says co-author James Lunney at Trinity College Dublin, Ireland. "We also see evidence that the pressure in the plasma plume has an influence on the expansion of the nanoparticle plume. Analysis of these expansion dynamics may also improve our physical understanding of the overall ablation process."

The article, "Dynamics of the plumes produced by ultrafast laser ablation of metals" by Salvatore Amoruso (Universita di Napoli Federico II), Tony Donnelly, James G. Lunney (Trinity College Dublin), Riccardo Bruzzese (University degli Studi di Napoli Federico II), Xuan Wang (University di Napoli Federico II) and Xiaochang Ni (Tianjin University) appears in the Journal of Applied Physics. http://link.aip.org/link/japiau/v108/i4/p043309/s1

Journalists may request a free PDF of this article by contacting jbardi@aip.org

ABOUT JOURNAL OF APPLIED PHYSICS
Journal of Applied Physics is the American Institute of Physics' (AIP) archival journal for significant new results in applied physics; content is published online daily, collected into two online and printed issues per month (24 issues per year). The journal publishes articles that emphasize understanding of the physics underlying modern technology, but distinguished from technology on the one side and pure physics on the other. See: http://jap.aip.org/
ABOUT AIP
The American Institute of Physics is a federation of 10 physical science societies representing more than 135,000 scientists, engineers, and educators and is one of the world's largest publishers of scientific information in the physical sciences. Offering partnership solutions for scientific societies and for similar organizations in science and engineering, AIP is a leader in the field of electronic publishing of scholarly journals. AIP publishes 12 journals (some of which are the most highly cited in their respective fields), two magazines, including its flagship publication Physics Today; and the AIP Conference Proceedings series. Its online publishing platform Scitation hosts nearly two million articles from more than 185 scholarly journals and other publications of 28 learned society publishers.

Jason Socrates Bardi | Newswise Science News
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Studying fundamental particles in materials
17.01.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Seeing the quantum future... literally
16.01.2017 | University of Sydney

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>