Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-Fast Magnetic Reversal Observed

14.04.2011
A newly discovered magnetic phenomenon could accelerate data storage by several orders of magnitude.

With a constantly growing flood of information, we are being inundated with increasing quantities of data, which we in turn want to process faster than ever. Oddly, the physical limit to the recording speed of magnetic storage media has remained largely unresearched. In experiments performed on the particle accelerator BESSY II of Helmholtz-Zentrum Berlin, Dutch researchers have now achieved ultrafast magnetic reversal and discovered a surprising phenomenon.

In magnetic memory, data is encoded by reversing the magnetization of tiny points. Such memory works using the so-called magnetic moments of atoms, which can be in either “parallel” or “antiparallel” alignment in the storage medium to represent to “0” and “1”.

The alignment is determined by a quantum mechanical effect called “exchange interaction”. This is the strongest and therefore the fastest “force” in magnetism. It takes less than a hundred femtoseconds to restore magnetic order if it has been disturbed. One femtosecond is a millionth of a billionth of a second. Ilie Radu and his colleagues have now studied the hitherto unknown behaviour of magnetic alignment before the exchange interaction kicks in. Together with researchers from Berlin and York, they have published their results in Nature (DOI: 10.1038/nature09901, 2011).

For their experiment, the researchers needed an ultra-short laser pulse to heat the material and thus induce magnetic reversal. They also needed an equally short X-ray pulse to observe how the magnetization changed. This unique combination of a femtosecond laser and circular polarized, femtosecond X-ray light is available in one place in the world: at the synchrotron radiation source BESSY II in Berlin, Germany.

In their experiment, the scientists studied an alloy of gadolinium, iron and cobalt (GdFeCo), in which the magnetic moments naturally align antiparallel. They fired a laser pulse lasting 60 femtoseconds at the GdFeCo and observed the reversal using the circular-polarized X-ray light, which also allowed them to distinguish the individual elements. What they observed came as a complete surprise: The Fe atoms already reversed their magnetization after 300 femtoseconds while the Gd atoms required five times as long to do so. That means the atoms were all briefly in parallel alignment, making the material strongly magnetized. “This is as strange as finding the north pole of a magnet reversing slower than the south pole,” says Ilie Radu.

With their observation, the researchers have not only proven that magnetic reversal can take place in femtosecond timeframes, they have also derived a concrete technical application from it: “Translated to magnetic data storage, this would signify a read/write rate in the terahertz range. That would be around 1000 times faster than present-day commercial computers,” says Radu.

F. Rott

Dr. Ilie Radu | EurekAlert!
Further information:
http://www.helmholtz-berlin.de
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13243&sprache=en&typoid=

More articles from Physics and Astronomy:

nachricht NASA laser communications to provide Orion faster connections
30.03.2017 | NASA/Goddard Space Flight Center

nachricht Pinball at the atomic level
30.03.2017 | Max-Planck-Institut für Struktur und Dynamik der Materie

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>