Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB Physicists mix 2 lasers to create light at many frequencies

29.03.2012
A team of physicists at UC Santa Barbara has seen the light, and it comes in many different colors.

By aiming high- and low-frequency laser beams at a semiconductor, the researchers caused electrons to be ripped from their cores, accelerated, and then smashed back into the cores they left behind. This recollision produced multiple frequencies of light simultaneously. Their findings appear in the current issue of the science journal Nature.

"This is a very remarkable phenomenon. I have never seen anything like this before," said Mark Sherwin, whose research group made the groundbreaking discovery. Sherwin is a professor of physics at UCSB and a co-author of the paper. He is also director of the campus's Institute for Terahertz Science and Technology.

When the high-frequency optical laser beam hits the semiconductor material –– in this case, gallium arsenide nanostructures –– it creates an electron-hole pair called an exciton. The electron is negatively charged, and the hole is positively charged, and the two are bound together by their mutual attraction. "The high-frequency laser creates electrons and holes," Sherwin explained. "The very strong, low-frequency free electron laser beam rips the electron away from the hole and accelerates it. As the low-frequency field oscillates, it causes the electron to come careening back to the hole." The electron has excess energy because it has been accelerated, and when it slams back into the hole, the recombined electron-hole pair emits photons at new frequencies.

"It's fairly routine to mix the lasers and get one or two new frequencies, Sherwin continued. "But to see all these different new frequencies, up to 11 in our experiment, is the exciting phenomenon. Each frequency corresponds to a different color."

In terms of real-world applications, the electron-hole recollision phenomenon has the potential to significantly increase the speed of data transfer and communication processes. One possible application involves multiplexing –– the ability to send data down multiple channels –– and another is high-speed modulation.

"Think of your cable Internet," explained Ben Zaks, a UCSB doctoral student in physics and the paper's lead author. "The cable is a bundle of fiber optics, and you're sending a beam with a wavelength that's approximately 1.5 microns down the line. But within that beam there are a lot of frequencies separated by small gaps, like a fine-toothed comb. Information going one way moves on one frequency, and information going another way uses another frequency. You want to have a lot of frequencies available, but not too far from one another."

The electron-hole recollision phenomenon does just that –– it creates light at new frequencies, with optimal separation between them.

The researchers utilize a free electron laser –– a building-size machine in UCSB's Broida Hall –– to produce the electron-hole recollisions, which they note is not practical for real-world applications. Theoretically, however, a transistor could be used in place of the free electron laser to produce the strong terahertz fields. "The transistor would then modulate the near infrared beam," Zaks continued. "Our data indicates that we are modulating the near infrared laser at twice the terahertz frequency. This is where we could really see this working to increase the speed of optical modulation, which is how you get information down a cable line."

The electron-hole recollision phenomenon creates many new avenues for research and exploration, Sherwin noted. "It is an interesting time because there are a lot of people who can participate in doing this kind of research," he said. "We have a unique tool –– a free electron laser –– which gives us a big advantage for exploring the properties of fundamental materials. We just put it in front of our laser beams and measure the colors of light going out. Now that we've seen this phenomenon, we can start doing the hard work of putting the pieces together on a chip."

In discussing the research team's discovery, Sherwin cited Michael Polanyi, the Hungarian scientist and science philosopher. "He talked about growing points in science, and I'm hoping this is going to be one of those, where a lot of people can use it as a foundation for going off in a lot of different directions," he said. "I want to continue working on it, but I'd like to see a lot of other people join in."

Also contributing to the research is the paper's second author, R.B. Liu of The Chinese University in Hong Kong. "This is an excellent example of the value of communicating with scientists from all over the globe," said Sherwin. "If we had never met, this research would not have happened."

Andrea Estrada | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Physics and Astronomy:

nachricht Tiny lasers from a gallery of whispers
20.09.2017 | American Institute of Physics

nachricht New quantum phenomena in graphene superlattices
19.09.2017 | Graphene Flagship

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>