UCSB physicists detect and control quantum states in diamond with light

This is an important step toward using quantum physics to expand computing power and to communicate over long distances without the possibility of eavesdropping. The work appears online today at Science Express.

The research, led by David Awschalom, professor of physics, electrical and computer engineering, and director of UCSB's Center for Spintronics and Quantum Computation, and graduate student Bob Buckley, exploits an unusual property of the microscopic quantum world: the ability to combine things that are very different.

Using electrons trapped in a single atom-sized defect within a thin crystal of diamond, combined with laser light of precisely the right color, the scientists showed that it was possible to briefly form a mixture of light and matter. After forming this light-matter mixture, they were able to use measurements of the light to determine the state of the electrons.

Likewise, by separately examining the electrons, they showed that the electron configuration was not destroyed by the light. Instead, it was modified –– a dramatic demonstration of control over quantum states using light. “Manipulating the quantum state of a single electron in a semiconductor without destroying the information represents an extremely exciting scientific development with potential technological impact,” said Awschalom.

Preserving quantum states is a major obstacle in the nascent field of quantum computing. One benefit of quantum information is that it can never be copied, unlike information transferred between today's computers, providing a measure of security that is safeguarded by fundamental laws of nature. The ability to measure a quantum state without destroying it is an important step in the development of technologies that harness the advantages of the quantum world.

Buckley, putting this research in perspective, said: “Diamond may someday become for a quantum computer what silicon is for digital computers today –– the building blocks of logic, memory, and communication. Our experiment provides a new tool to make that happen. ”

Media Contact

Gail Gallessich EurekAlert!

More Information:

http://www.ucsb.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors