Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA physicists control chemical reactions mechanically

17.09.2010
UCLA physicists have taken a significant step in controlling chemical reactions mechanically, an important advance in nanotechnology, UCLA physics professor Giovanni Zocchi and colleagues report.
Chemical reactions in the cell are catalyzed by enzymes, which are protein molecules that speed up reactions. Each protein catalyzes a specific reaction. In a chemical reaction, two molecules collide and exchange atoms; the enzyme is the third party, the "midwife to the reaction."

But the molecules have to collide in a certain way for the reaction to occur. The enzyme binds to the molecules and lines them up, forcing them to collide in the "right" way, so the probability that the molecules will exchange atoms is much higher.

"Instead of just watching what the molecules do, we can mechanically prod them," said Zocchi, the senior author of the research.

To do that, Zocchi and his graduate students, Chiao-Yu Tseng and Andrew Wang, attached a controllable molecular spring made of DNA to the enzyme. The spring is about 10,000 times smaller than the diameter of a human hair. They can mechanically turn the enzyme on and off and control how fast the chemical reaction occurs. In their newest research, they attached the molecular spring at three different locations on the enzyme and were able to mechanically influence different specific steps of the reaction.

They published their research in the journal Europhysics Letters, a publication of the European Physical Society, in July.

"We have stressed the enzyme in different ways," Zocchi said. "We can measure the effect on the chemical reaction of stressing the molecule this way or that way. Stressing the molecule in different locations produces different responses. If you attach the molecular spring in one place, nothing much happens to the chemical reaction, but you attach it to a different place and you affect one step in the chemical reaction. Then you attach it to a third place and affect another step in this chemical reaction."

Zocchi, Tseng and Wang studied the rate of the chemical reactions and reported in detail what happened to the steps of the reactions as they applied mechanical stress to the enzyme at different places.

"Standing on the shoulders of 50 years of structural studies of proteins, we looked beyond the structural description at the dynamics, specifically the question of what forces — and applied where — have what effect on the reaction rates," Zocchi said.

In a related second paper, Zocchi and his colleagues reached a surprising conclusion in solving a longstanding physics puzzle.

When one bends a straight tree branch or a straight rod by compressing it longitudinally, the branch or rod at first remains straight and does not bend until a certain critical force is exceeded. At the critical force, it does not bend a little — it suddenly buckles and bends a lot.

"This phenomenon is well known to any child who has made bows from hazelnut bush branches, for example, which are typically quite straight. To string the bow, you have to press down on it hard to buckle it, but once it is bent, you need only a smaller force to keep it so," Zocchi said.

The UCLA physicists studied the elastic energy of their DNA molecular spring when it is sharply bent.

"Such a short double-stranded DNA molecule is somewhat similar to a rod, but the elasticity of DNA at this scale was not known," Zocchi said. "What is the force the DNA molecular spring is exerting on the enzyme? We have answered this question.

"We find there is a similar bifurcation with this DNA molecule. It goes from being bent smoothly to having a kink. When we bend this molecule, there is a critical force where there is a qualitative difference. The molecule is like the tree branch and the rod in this respect. If you're just a little below the threshold, the system has one kind of behavior; if you're just a little above the threshold force, the behavior is totally different. The achievement was to measure directly the elastic energy of this stressed molecule, and from the elastic energy characterize the kink."

Co-authors on this research are UCLA physics graduate students Hao Qu, Chiao-Yu Tseng and Yong Wang and UCLA associate professor of chemistry and biochemistry Alexander Levine, who is a member of the California NanoSystems Institute at UCLA. The research was published in April, also in the journal Europhysics Letters.

"We can now measure for any specific DNA molecule what the elastic energy threshold for the instability is," Zocchi said. "I see beauty in this important phenomenon. How is it possible that the same principle applies to a tree branch and to a molecule? Yet it does. The essence of physics is finding common behavior in systems that seem very different."

While Zocchi's research may have applications for medicine and other fields, he emphasizes the advance in knowledge itself.

"There is value in science that adds to our knowledge and helps us understand our world, apart from the value of future applications," he said. "I study problems that I find interesting, where I think I can make a contribution. Why study a particular problem rather than another? Perhaps for the same reason a painter chooses a particular landscape. Perhaps we see beauty there."

UCLA is California's largest university, with an enrollment of nearly 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer more than 323 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Five alumni and five faculty have been awarded the Nobel Prize.

For more news, visit the UCLA Newsroom or follow us on Twitter.

Stuart Wolpert | EurekAlert!
Further information:
http://www.ucla.edu

More articles from Physics and Astronomy:

nachricht Further Improvement of Qubit Lifetime for Quantum Computers
09.12.2016 | Forschungszentrum Jülich

nachricht Electron highway inside crystal
09.12.2016 | Julius-Maximilians-Universität Würzburg

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>