Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA-Operated Stereo Camera Selected for Mars Mission

04.08.2010
The High Resolution Stereo Color Imager, or HiSCI, is designed to uncover interactions between the surface and the atmosphere on the Red Planet.

NASA and the European Space Agency, or ESA, have embarked on a joint program to explore Mars in the coming decades and have selected five science instruments – including one from the University of Arizona – for the first mission.

The ExoMars Trace Gas Orbiter, scheduled to launch in 2016, is the first of three joint robotic missions to the Red Planet. It will study the chemical makeup of the Martian atmosphere with a 1,000-fold increase in sensitivity over previous Mars orbiters.

The mission will focus on trace gases, including methane, which could be potentially geochemical or biological in origin and be indicators for the existence of life on Mars. It also will serve as an additional communications relay for Mars surface missions beginning in 2018.

A stereo camera called the High Resolution Stereo Color Imager, or HiSCI, operated by the UA, will be a part of the orbiter.

"The HiSCI camera will provide us with the very best color and stereo imaging of Mars we have ever seen, so we can find and study surface changes," said Alfred McEwen, a professor of planetary science at the UA who leads the HiSCI project.

HiSCI will be operated by the same team at the UA's Lunar and Planetary Lab, or LPL, that has been acquiring images from Mars in stunning detail using the High Resolution Imaging Science Experiment, or HiRISE, camera that is orbiting Mars.

HiSCI's color images will be much wider (more than 5 miles) than those of HiRISE (less than 1 mile), which will allow researchers to see much more of the Martian surface and changes that are occurring there.

Having the three-dimensional and color information from HiSCI also will add to the value of existing high-resolution images from HiRISE, according to Shane Byrne, assistant professor at LPL and deputy principal investigator on the HiSCI project.

HiRISE can take images at a finer resolution, but its color-imaging capabilities are limited and it requires two orbital passes, which can be months apart, to acquire a stereo image of a feature on Mars' surface. HiSCI will be able to take a stereo pair of images in the same pass, which eliminates unwanted variation, such as differences in sun angle at the time each image is shot.

In addition to using HiSCI to image previously unknown features, the UA team plans to take a closer look at features already imaged with the HiRISE camera and other Mars orbital experiments and to search for new candidate landing sites to follow up on new discoveries.

"Over the last four years, HiRISE has photographed only 1 percent of the Martian surface, but it already has discovered many unexpected features and phenomena," Byrne said. "It's exciting to think of all the great new discoveries we'll make with HiSCI's greater color and stereo capabilities."

NASA and ESA invited scientists worldwide to propose the spacecraft's instruments. The five selected were from 19 proposals submitted in January. Both agencies evaluated the submissions and chose those with the best science value and lowest risk.

The instrument selection begins the first phase of the new NASA-ESA alliance for future ventures to Mars. The other instruments selected for the mission and their respective principal investigators are:

- Mars Atmosphere Trace Molecule Occultation Spectrometer – a spectrometer designed to detect very low concentrations of the molecular components of the Martian atmosphere; Paul Wennberg, California Institute of Technology in Pasadena, Calif.

- High Resolution Solar Occultation and Nadir Spectrometer – a spectrometer designed to detect traces of the components of the Martian atmosphere and to map where they are on the surface; Ann C. Vandaele of the Belgian Institute for Space Aeronomy in Brussels, Belgium.

- ExoMars Climate Sounder – an infrared radiometer that provides daily global data on dust, water vapor and other materials to provide the context for data analysis from the spectrometers; John Schofield of NASA's Jet Propulsion Laboratory in Pasadena, Calif.

- Mars Atmospheric Global Imaging Experiment – a wide-angle, multi-spectral camera to provide global images of Mars in support of the other instruments; Bruce Cantor of Malin Space Science Systems in San Diego, Calif.

The science teams on all the instruments have broad international participation from Europe and the U.S., with important hardware contributions from Canada and Switzerland.

"To fully explore Mars, we want to marshal all the talents we can on Earth," said David Southwood, ESA director for science and robotic exploration. "Now NASA and ESA are combining forces for the joint ExoMars Trace Gas Orbiter mission. Mapping methane allows us to investigate further that most important of questions: Is Mars a living planet, and if not, can or will it become so in the future?"

NASA and ESA share a common interest in conducting robotic missions to the Red Planet for scientific purposes and to prepare for possible human visits.

After a series of extensive discussions, the science heads of both agencies agreed on a plan of cooperation during a July 2009 meeting in Plymouth, England, later confirmed by ESA director general Jean-Jacques Dordain and NASA administrator Charles Bolden in a statement of intent that was signed in November.

The plan consists of two Mars cooperative missions in 2016 and 2018 and a later joint sample return mission. The 2016 mission features the European-built ExoMars Trace Gas Orbiter, a European-built small lander demonstrator, a primarily-U.S. international science payload, and NASA-provided launch vehicle and communications components. ESA member states will provide additional instrument support.

The 2018 mission consists of a European rover with a drilling capability, a NASA rover capable of caching selected samples for potential future return to Earth, a NASA landing system and a NASA launch vehicle. These activities are designed to serve as the foundation of a cooperative program to increase science returns and move the agencies toward a joint Mars sample return mission in the 2020s.

CONTACTS:

Alfred McEwen,
Lunar and Planetary Lab, The University of Arizona,
mcewen@lpl.arizona.edu
Shane Byrne,
Lunar and Planetary Lab, The
University of Arizona, (520) 626-0407, shane@lpl.arizona.edu
Daniel Stolte, Office of Communications,
The University of Arizona, (520) 626-4402; stolte@email.arizona.edu

Alfred McEwen | University of Arizona
Further information:
http://uanews.org/node/33130
http://www.arizona.edu

More articles from Physics and Astronomy:

nachricht NASA's Fermi catches gamma-ray flashes from tropical storms
25.04.2017 | NASA/Goddard Space Flight Center

nachricht DGIST develops 20 times faster biosensor
24.04.2017 | DGIST (Daegu Gyeongbuk Institute of Science and Technology)

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>