Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumors under fire: Munich physicists generate highly energetic carbon beams using intense lasers

11.12.2009
Oncologists have a dream: they want to use highly energetic ion beams in good quality and accurately defined dose for a pin-sharp and cost-effective radiation treatment of tumors.

Modern techniques based on intense laser pulses may in the future replace expensive conventional particle accelerators. A team of physicists of the Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP) lead by Prof. Dr. Dietrich Habs (Ludwig-Maximilian University Munich) in cooperation with scientists of the Max-Born-Institute in Berlin now succeeded to finally experimentally demonstrate a mechanism of laser-driven beam generation that has been predicted by theorists long time ago.

The pioneering results are published in the latest issue of Physical Review Letters.

Carbon beams are considered to be the most effective method of cancer therapy, as tumors are destroyed permanently with minimum trauma. Whereas conventional x-rays or electron beams cause significant damage to the surrounding healthy tissue on their pathway into the body, the high biological effectiveness of carbon beams can be precisely concentrated in the tumor, thus exclusively killing targeted cancer cells. Therefore, carbon ions are an outstanding tool for radiation therapy of deeply situated tumors located in highly sensitive regions like in the vicinity of the brain stem, where doctors would refuse to even contemplate surgical intervention. The generation of these beams is currently rather challenging, state-of-the-art are complex huge accelerator facilities which are extremely expensive in construction, operation and maintenance. Hence, the vast majority of today's cancer patients is unable to benefit from this kind of treatment. "As doctors we are dependent on the physicists' progress to develop a cheaper and more compact carbon beam source in order to make ion beam therapy available for everybody" Prof. Dr. Michael Molls points out, another MAP member and director of the TUM Department of Radiation Oncology.

Indeed, in recent years major advances have been achieved in the generation of highly energetic ion beams based on compact lasers instead of large-scale accelerator facilities. "The new technique allows an acceleration distance smaller than the diameter of a human hair," Habs explains. Such small distances are sufficient to accelerate ions to high energies when employing highly intense laser pulses. Not only the accelerator itself, but also the beam guide is being shrunken significantly, as the several tons of weight steering magnets can be replaced by small-sized mirrors. However, up to now no efficient method has been developed to transfer the same amount of energy from the laser to every single ion to allow for a well defined penetration depth of the particle beam in radiation therapy. This is what Prof. Habs and his team are working on. Andreas Henig carried out the first successful experiments together with Berlin physicists: "With the latest results we succeeded in an efficient ion beam generation, while simultaneously reducing the energy spread of the accelerated particles. We are very happy about this experimental break-through!"

The scientists generate the high energy ions by irradiating diamond-like carbon foils with intense laser pulses. Atoms located within the foil are split into electrons and ions by the strong electric field of the laser focus, a plasma is generated. The enormous laser intensity (about 1020 times more intense than the sun) strongly heats the electrons and separates them in an expanding cloud from the heavier and therefore slower ions. A huge charge separation field builds up, accelerating ions to velocities up to a tenth of light speed. However, up to now laser-accelerated ions exhibited a broad energy spectrum, whereas medical applications demand a well-defined particle energy to allow for a precise control of penetration depth and dose distribution in the body.

The group of Munich physicists is the first to experimentally demonstrate an acceleration process which allows all ions to fly with the same velocity. By changing the laser polarization from linear to circular and reducing the diamond-like carbon foil to only a few nanometers in thickness, an uncontrolled heating of the particles and subsequent foil expansion was avoided. Instead, the laser light now pushes the electrons collectively as a nanometer-thin layer in forward direction, dragging carbon ions with it. The whole foil is driven like a sail by the light pressure of the laser - a mechanism that has been predicted by theorists long time ago.

The accomplished results provide the first experimental proof and pave the way towards a cost-saving generation of the highly promising carbon ion beams. The next challenge for the physicists in the Cluster of Excellence is to further increase the energy of the laser-accelerated ion beam. At the moment it is not yet sufficient to penetrate the body far enough to reach deeply situated tumors. Nonetheless, Habs is excited: "Already in a few moths from now we will start irradiating single cells at our biomedical beamline here at the Max-Planck-Institute of Quantum Optics in Garching and will in parallel work hard to further enhance the parameters of the ion beam."

Original publication:
DOI: 10.1103/PhysRevLett.103.245003

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://www.ha.physik.uni-muenchen.de/index.html

More articles from Physics and Astronomy:

nachricht New research identifies how 3-D printed metals can be both strong and ductile
11.12.2017 | University of Birmingham

nachricht Three kinds of information from a single X-ray measurement
11.12.2017 | Friedrich-Schiller-Universität Jena

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>