Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tumors under fire: Munich physicists generate highly energetic carbon beams using intense lasers

11.12.2009
Oncologists have a dream: they want to use highly energetic ion beams in good quality and accurately defined dose for a pin-sharp and cost-effective radiation treatment of tumors.

Modern techniques based on intense laser pulses may in the future replace expensive conventional particle accelerators. A team of physicists of the Cluster of Excellence "Munich-Centre for Advanced Photonics" (MAP) lead by Prof. Dr. Dietrich Habs (Ludwig-Maximilian University Munich) in cooperation with scientists of the Max-Born-Institute in Berlin now succeeded to finally experimentally demonstrate a mechanism of laser-driven beam generation that has been predicted by theorists long time ago.

The pioneering results are published in the latest issue of Physical Review Letters.

Carbon beams are considered to be the most effective method of cancer therapy, as tumors are destroyed permanently with minimum trauma. Whereas conventional x-rays or electron beams cause significant damage to the surrounding healthy tissue on their pathway into the body, the high biological effectiveness of carbon beams can be precisely concentrated in the tumor, thus exclusively killing targeted cancer cells. Therefore, carbon ions are an outstanding tool for radiation therapy of deeply situated tumors located in highly sensitive regions like in the vicinity of the brain stem, where doctors would refuse to even contemplate surgical intervention. The generation of these beams is currently rather challenging, state-of-the-art are complex huge accelerator facilities which are extremely expensive in construction, operation and maintenance. Hence, the vast majority of today's cancer patients is unable to benefit from this kind of treatment. "As doctors we are dependent on the physicists' progress to develop a cheaper and more compact carbon beam source in order to make ion beam therapy available for everybody" Prof. Dr. Michael Molls points out, another MAP member and director of the TUM Department of Radiation Oncology.

Indeed, in recent years major advances have been achieved in the generation of highly energetic ion beams based on compact lasers instead of large-scale accelerator facilities. "The new technique allows an acceleration distance smaller than the diameter of a human hair," Habs explains. Such small distances are sufficient to accelerate ions to high energies when employing highly intense laser pulses. Not only the accelerator itself, but also the beam guide is being shrunken significantly, as the several tons of weight steering magnets can be replaced by small-sized mirrors. However, up to now no efficient method has been developed to transfer the same amount of energy from the laser to every single ion to allow for a well defined penetration depth of the particle beam in radiation therapy. This is what Prof. Habs and his team are working on. Andreas Henig carried out the first successful experiments together with Berlin physicists: "With the latest results we succeeded in an efficient ion beam generation, while simultaneously reducing the energy spread of the accelerated particles. We are very happy about this experimental break-through!"

The scientists generate the high energy ions by irradiating diamond-like carbon foils with intense laser pulses. Atoms located within the foil are split into electrons and ions by the strong electric field of the laser focus, a plasma is generated. The enormous laser intensity (about 1020 times more intense than the sun) strongly heats the electrons and separates them in an expanding cloud from the heavier and therefore slower ions. A huge charge separation field builds up, accelerating ions to velocities up to a tenth of light speed. However, up to now laser-accelerated ions exhibited a broad energy spectrum, whereas medical applications demand a well-defined particle energy to allow for a precise control of penetration depth and dose distribution in the body.

The group of Munich physicists is the first to experimentally demonstrate an acceleration process which allows all ions to fly with the same velocity. By changing the laser polarization from linear to circular and reducing the diamond-like carbon foil to only a few nanometers in thickness, an uncontrolled heating of the particles and subsequent foil expansion was avoided. Instead, the laser light now pushes the electrons collectively as a nanometer-thin layer in forward direction, dragging carbon ions with it. The whole foil is driven like a sail by the light pressure of the laser - a mechanism that has been predicted by theorists long time ago.

The accomplished results provide the first experimental proof and pave the way towards a cost-saving generation of the highly promising carbon ion beams. The next challenge for the physicists in the Cluster of Excellence is to further increase the energy of the laser-accelerated ion beam. At the moment it is not yet sufficient to penetrate the body far enough to reach deeply situated tumors. Nonetheless, Habs is excited: "Already in a few moths from now we will start irradiating single cells at our biomedical beamline here at the Max-Planck-Institute of Quantum Optics in Garching and will in parallel work hard to further enhance the parameters of the ion beam."

Original publication:
DOI: 10.1103/PhysRevLett.103.245003

Christine Kortenbruck | idw
Further information:
http://www.munich-photonics.de
http://www.ha.physik.uni-muenchen.de/index.html

More articles from Physics and Astronomy:

nachricht New NASA study improves search for habitable worlds
20.10.2017 | NASA/Goddard Space Flight Center

nachricht Physics boosts artificial intelligence methods
19.10.2017 | California Institute of Technology

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>