Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Trapping a rainbow: Lehigh researchers slow broadband light waves with nanoplasmonic structures

15.03.2011
A team of electrical engineers and chemists at Lehigh University have experimentally verified the "rainbow" trapping effect, demonstrating that plasmonic structures can slow down light waves over a broad range of wavelengths.

The idea that a rainbow of broadband light could be slowed down or stopped using plasmonic structures has only recently been predicted in theoretical studies of metamaterials. The Lehigh experiment employed focused ion beams to mill a series of increasingly deeper, nanosized grooves into a thin sheet of silver.

By focusing light along this plasmonic structure, this series of grooves or nano-gratings slowed each wavelength of optical light, essentially capturing each individual color of the visible spectrum at different points along the grating. The findings hold promise for improved data storage, optical data processing, solar cells, bio sensors and other technologies.

While the notion of slowing light or trapping a rainbow sounds like ad speak, finding practical ways to control photons—the particles that makes up light— could significantly improve the capacity of data storage systems and speed the processing of optical data.

The research required the ability to engineer a metallic surface to produce nanoscale periodic gratings with varying groove depths. This alters the optical properties of the nanopatterned metallic surface, called Surface Dispersion Engineering. The broadband surface light waves are then trapped along this plasmonic metallic surface with each wavelength trapped at a different groove depth, resulting in a trapped rainbow of light.

Through direct optical measurements, the team showed that light of different wavelengths in the 500-700nm region was "trapped" at different positions along the grating, consistent with computer simulations. To prepare the nanopattern gratings required "milling" 150nm wide rectangular grooves every 520nm along the surface of a 300-nm-thick silver sheet. While intrinsic metal loss on the surface of the metal did not permit the complete "stopping" of these plasmons, future research may look into compensating this loss in an effort to stop light altogether.

"Metamaterials, which are man-made materials with feature sizes smaller than the wavelength of light, offer novel applications in nanophotonics, photovoltaic devices, and biosensors on a chip," said Filbert J. Bartoli, principal investigator, professor and chair of the Department of Electrical and Computer Engineering. "Creating such nanoscale patterns on a metal film allows us to control and manipulate light propogation. The findings of this paper present an unambiguous experimental demonstration of rainbow trapping in plasmonic nanostructures, and represents an important step in this direction."

"This technology for slowing light at room temperature can be integrated with other materials and components, which could lead to novel platforms for optical circuits. The ability of surface plasmons to concentrate light within nanoscale dimensions makes them very promising for the development of biosensors on chip and the study of nonlinear optical interactions," said Qiaoqiang Gan, who completed this work while a doctoral candidate at Lehigh University, and is now an assistant professor in the Department of Electrical Engineering , State University of New York at Buffalo.

The study was conducted by Bartoli, Qiaoqiang Gan, Yongkang Gao and Yujie J. Ding of the Center for Optical Technologies in the Department of Electrical and Computer Engineering at Lehigh University; and Kyle Wagner and Dmitri V. Vezenov of the Department of Chemistry at Lehigh.

The study was funded by the National Science Foundation. It is published in the current issue of the Proceedings of the National Academy of Sciences.

JordanReese | EurekAlert!
Further information:
http://www.lehigh.edu

More articles from Physics and Astronomy:

nachricht New type of smart windows use liquid to switch from clear to reflective
14.12.2017 | The Optical Society

nachricht New ultra-thin diamond membrane is a radiobiologist's best friend
14.12.2017 | American Institute of Physics

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>