Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin-Film Diamonds

02.07.2013
A new method for creating thin films of diamonds, which is described in the journal Applied Physics Letters, produced by AIP Publishing, may allow manufacturers to enhance future electronics.

In industrial and high-tech settings, diamonds are particularly valued for their hardness, optical clarity, smoothness, and resistance to chemicals, radiation and electrical fields.

For electronics applications, researchers “dope” diamonds in order to make them conductive, introducing the semiconductor boron into the diamond manufacturing process. In the past, it has been a challenge to imbue electronic devices with diamond-like qualities by applying a doped diamond coating, or thin film because the high temperatures required to apply a doped diamond thin film would destroy sensitive electronics, including biosensors, semiconductors, and photonic and optical devices.

In their Applied Physics Letters paper, a team of researchers at Advanced Diamond Technologies, Inc., in Romeoville, Illinois report creating thin films of boron-doped diamond at temperatures low enough (between 460-600°C) to coat many of these devices.

While low-temperature deposition of boron-doped diamond thin films is not conceptually new, the research team found no evidence in the literature of such diamond films that had both sufficient quality and manufacturing rates fast enough to be commercially useful. Tweaking their own normal-temperature boron doping recipe by both lowering the temperature and adjusting the typical ratio of methane to hydrogen gas yielded a high quality film without appreciable change in conductivity or smoothness compared to diamond films made at higher temperatures. The researchers say more data and study is needed to better understand low-temperature opportunities.

Even so, by further optimizing the recipe, the researchers expect to be able to deposit boron-doped diamond thin films at temperatures even lower than 400° C.

"The lower the deposition temperature, the larger number of electronic device applications we can enable,” said Hongjun Zeng of Advanced Diamond Technologies, Inc. "That will further expand the product categories for thin, smooth, conductive diamond coatings," Zeng added.

The article, "Low Temperature Boron Doped Diamond" by Hongjun Zeng, Prabhu U. Arumugam, Shabnam Siddiqui, and John A. Carlisle appears in the Journal Applied Physics Letters. See: http://dx.doi.org/10.1063/1.4809671

Authors of this article are affiliated with Advanced Diamond Technologies, Inc. and Argonne National Laboratory.

ABOUT THE JOURNAL
Applied Physics Letters, published by the AIP Publishing LLC, features concise, up-to-date reports on significant new findings in applied physics. See: http://apl.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Igniting a solar flare in the corona with lower-atmosphere kindling
29.03.2017 | New Jersey Institute of Technology

nachricht NASA spacecraft investigate clues in radiation belts
28.03.2017 | NASA/Goddard Space Flight Center

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>