Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thin-Film Diamonds

02.07.2013
A new method for creating thin films of diamonds, which is described in the journal Applied Physics Letters, produced by AIP Publishing, may allow manufacturers to enhance future electronics.

In industrial and high-tech settings, diamonds are particularly valued for their hardness, optical clarity, smoothness, and resistance to chemicals, radiation and electrical fields.

For electronics applications, researchers “dope” diamonds in order to make them conductive, introducing the semiconductor boron into the diamond manufacturing process. In the past, it has been a challenge to imbue electronic devices with diamond-like qualities by applying a doped diamond coating, or thin film because the high temperatures required to apply a doped diamond thin film would destroy sensitive electronics, including biosensors, semiconductors, and photonic and optical devices.

In their Applied Physics Letters paper, a team of researchers at Advanced Diamond Technologies, Inc., in Romeoville, Illinois report creating thin films of boron-doped diamond at temperatures low enough (between 460-600°C) to coat many of these devices.

While low-temperature deposition of boron-doped diamond thin films is not conceptually new, the research team found no evidence in the literature of such diamond films that had both sufficient quality and manufacturing rates fast enough to be commercially useful. Tweaking their own normal-temperature boron doping recipe by both lowering the temperature and adjusting the typical ratio of methane to hydrogen gas yielded a high quality film without appreciable change in conductivity or smoothness compared to diamond films made at higher temperatures. The researchers say more data and study is needed to better understand low-temperature opportunities.

Even so, by further optimizing the recipe, the researchers expect to be able to deposit boron-doped diamond thin films at temperatures even lower than 400° C.

"The lower the deposition temperature, the larger number of electronic device applications we can enable,” said Hongjun Zeng of Advanced Diamond Technologies, Inc. "That will further expand the product categories for thin, smooth, conductive diamond coatings," Zeng added.

The article, "Low Temperature Boron Doped Diamond" by Hongjun Zeng, Prabhu U. Arumugam, Shabnam Siddiqui, and John A. Carlisle appears in the Journal Applied Physics Letters. See: http://dx.doi.org/10.1063/1.4809671

Authors of this article are affiliated with Advanced Diamond Technologies, Inc. and Argonne National Laboratory.

ABOUT THE JOURNAL
Applied Physics Letters, published by the AIP Publishing LLC, features concise, up-to-date reports on significant new findings in applied physics. See: http://apl.aip.org

Jason Socrates Bardi | Newswise
Further information:
http://www.aip.org

More articles from Physics and Astronomy:

nachricht Measured for the first time: Direction of light waves changed by quantum effect
24.05.2017 | Vienna University of Technology

nachricht Physicists discover mechanism behind granular capillary effect
24.05.2017 | University of Cologne

All articles from Physics and Astronomy >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>